AmerisourceBergen

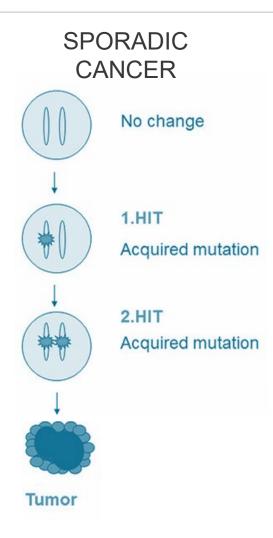
Kristine Ashcraft, BS, MBA

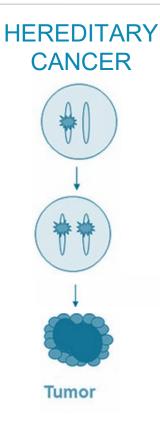
Kristine Ashcraft, BS, MBA is a molecular biologist by training and is the former CEO and founder of YouScript, recently acquired by Invitae. She has worked in pharmacogenomics since 2000 and was recently named one of the 25 leading voices in precision medicine. Kristine has authored multiple publications on the clinical and economic benefits of pharmacogenomic testing including one lauded as one of the most influential publications at an American Medical Informatics Association meeting. She serves on the Steering Committee of STRIPE, the FDA collaborative community for pharmacogenomics. She has been interviewed by numerous media outlets including the New York Times, the Wall Street Journal, and NBC Nightly News and has spoken at SXSW, American Society of Human Genetics, and numerous precision medicine conferences. She is committed to being a catalyst in the adoption of precision medicine.

Addressing Health Equity by Improving Access to Testing

09 | 17 | 22

Disclosures




- Ownership interest / shareholder: Invitae Corporation
- Salary: Invitae Corporation
- Presentation Compensation: International Oncology Network ("ION")
- Neither ION nor any pharmaceutical company has influenced the content of this presentation nor has ION independently verified the presentation for accuracy.

All Cancers Are Due to Genetic Variants

Somatic variant: a change in DNA that occurs after conception and is not present in the egg or sperm. Thus, it cannot be passed down to offspring.

Somatic variants acquired in key genes over time lead to cells becoming malignant

Germline variant: a change in DNA that is present in the egg and sperm and in every cell of the body. It can be passed down to offspring.

The presence of a germline variant means that fewer somatic variants are required for cancer to develop.

- Increased lifetime risk
- Earlier onset of disease
- Risk to family members

Germline Genetic Testing Still Underutilized

More Testing needed in Asian, Black and Hispanic Patients to Address VUS

- Only 25.2% of breast cancer patients and 34.3% of ovarian cancer patients had genetic testing
- Underutilization of genetic testing in ovarian cancer did not improve substantially during the 7-year interval analyzed.
- In 2017, for patients with breast cancer, VUS-only rates were substantially higher in Asian (42.4%), Black (36.6%), and Hispanic (27.7%) patients than in non-Hispanic White patients (24.5%, *P* < .001).
- Similar trends were noted for patients with ovarian cancer. VUS-only rates were substantially higher in Asian (47.8%), Black (46.0%), and Hispanic (36.8%) patients than in non-Hispanic White patients (24.6%, *P* < .001).

https://ascopubs.org/doi/abs/10.1200/JCO.20.02785

Key Statistics Reflecting Disparities in Cancer Care

Cancer Type (Incidence Rates)	African Americans	Whites	Rate Ratio
Multiple myeloma	14.3	6.4	2.23
Prostate, males	172.8	102.0	1.69
Stomach	9.6	5.7	1.68
Liver/Cholangio ca	11.9	7.4	1.61
Colorectal	45.5	36.5	1.25
Pancreas	15.7	12.7	1.24
Kidney/renal pelvis	19.2	15.7	1.22
Cervix uteri,	7.4	6.3	1.17
females			
Lung and bronchus	57.4	51.0	1.13
Breast, females	128.2	132.7	0.97

DEATH RATES with cancer types	African Americans	White	Rate Ratio
Prostate, males	38.4	18.2	2.11
Stomach	5.3	2.6	2.04
Multiple myeloma	6.0	3.0	2.00
Cervix uteri, females	3.1	2.2	1.41
Breast, females	27.3	19.6	1.39
Colorectal	18.3	13.4	1.37
Liver/Cholangio	8.5	6.3	1.35
Pancreas	13.3	11.0	1.21
Lung and bronchus	40.2	39.3	1.02
Kidney/renal pelvis	3.4	3.7	0.92

Next-generation sequencing (NGS) was performed among 50.1% of white patients and 39.8% of black patients (p < 0.0001)

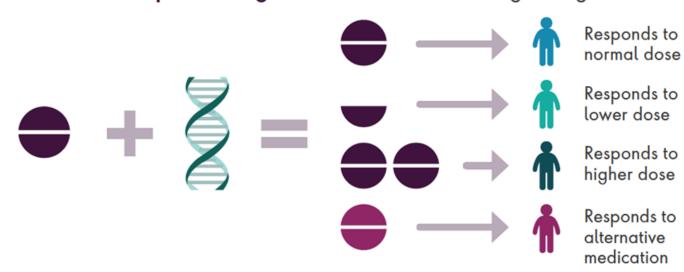
Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2016, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975-2016/, Accessed on July 31, 2022 https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.15 suppl.9005

Summary of Disparities report from the AACR (American Association of Cancer Research)

- 34% of all cancer deaths could be prevented if socioeconomic disparities are eliminated
- Eliminating healthcare disparities for racial and ethnic minorities would have saved \$230 billion in direct healthcare costs and over \$1 trillion in premature deaths and illnesses between 2003-6

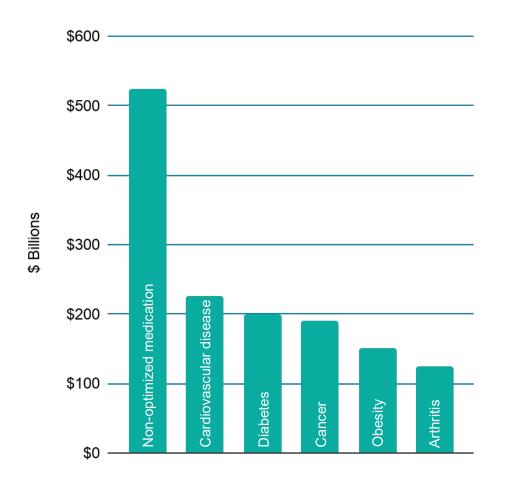
https://cancerprogressreport.aacr.org/wp-content/uploads/sites/2/2020/09/AACR_CDPR_2020.pdf

PGx Germline Variants Also Matter


What is pharmacogenomic testing?

Pharmacogenomic testing (PGx) helps doctors determine which drugs and doses are right—and which ones to avoid—based on each patient's genetic information. It is precision medicine for medications.

Blockbuster one-size-fits-all approach to drug development and prescribing



Personalized prescribing enables selection of the right drug and dose

Non-optimized Medications Harm Patients and Increase Costs

99% of patients

have genetic variants that impact medication response¹

Every 2 minutes

a life is lost because of non-optimized medications²

Exceeds disease cost

and annual cost of medications²

40 million patients

are on 5 or more meds, and the number will double by 2040³

¹Chanfreau-Coffinier C, et al. JAMA Netw Open. 2019;2(6):e195345. doi:10.1001/jamanetworkopen.2019.5345 ²Watanabe JH, et al. Ann Pharmacother. 2018;52(9):829–837.

³U.S. Census Bureau (2017). 2017 national population projection tables: Main series. Retrieved from https://www.census.gov/data/tables/2017/demo/popproj/2017-summary-tables.html

Hispanic Patients Underrepresented in PGx

"Although the Hispanic population is continuously growing in the United States, they are underrepresented in pharmacogenetic studies."*

- Invitae internal PGx data shows 9% Hispanic tested patients vs. 16.7% of US population
- Heart disease and cancer two leading causes of death in Hispanics treated with medications heavily impacted by PGx**

^{*}https://pubmed.ncbi.nlm.nih.gov/25431893/

^{**}https://www.cdc.gov/vitalsigns/hispanic-health/index.html

Disparities in Adverse Drug Events

Death rates from adverse drug reactions are highest among black patients & rural communities**

Women have 2x more of ADEs in FDA Reporting System (FAERS)*

FDA: Drug-gene and Drug-drug Interactions Equivalent

"Drug-gene interactions should be considered to be similar in scope to drug-drug interactions."

List of Drugs Impacted by Pharmacogenomics According to the FDA and Clinical Pharmacogenetics Implementation Consortium (CPIC)^{1,2}

Behavioral health

amitriptyline aripiprazole atomoxetine brexpiprazole citalopram clomipramine desipramine doxepin escitalopram fluvoxamine imipramine mirtazapine nortriptyline paroxetine protriptyline risperidone sertraline trimipramine venlafaxine vortioxetine

Transplant

tacrolimus

Cardiology

clopidogrel hydralazine quinidine simvastatin warfarin

Pain management

celecoxib codeine flurbiprofen ibuprofen meloxicam methadone oxycodone piroxicam tramadol

Rheumatology

azathioprine

Hematology/oncology

belinostat
capecitabine
eliglustat
fluorouracil
irinotecan
mercaptopurine
tamoxifen
thioguanine

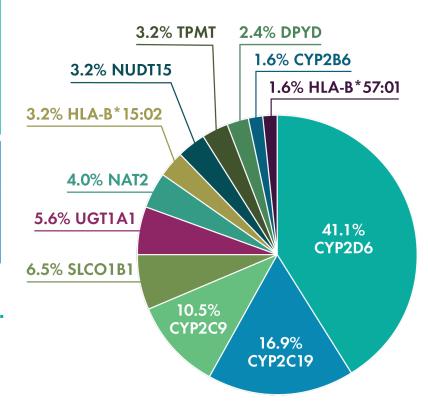
Infectious disease

abacavir atazanavir efavirenz nevirapine voriconazole

Ear, eye, nose, throat

dextromethorphan

Gastroenterology


dexlansoprazole esomeprazole lansoprazole omeprazole ondansetron pantoprazole rabeprazole

Neurology

phenytoin siponimod pimozide

And many more...

Same set of genes affect most medications

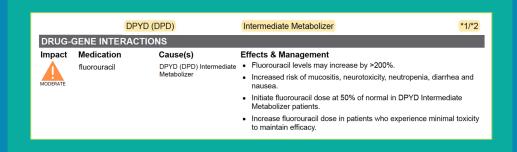
- 1. Genes-drugs. CPIC. June 15, 2021. Accessed April 29, 2022. https://cpicpgx.org/genes-drugs/
 - Center for Devices and Radiological Health. Table of pharmacogenetic associations. U.S. Food and Drug Administration. Accessed May 6, 2022. https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations

Drug-gene Interactions

There are many high-evidence drug-gene interactions in oncology, including:1,2

Drug name	Gene
avatrombopag	F2 F5
belinostat	UGT1A1
capecitabine	DPYD
eltrombopag	F5
erdafitinib	CYP2C9
fluorouracil	DPYD
fluorouracil topical	DPYD
gefitinib	CYP2D6

irinotecan	UGT1A1
mercaptopurine	NUDT15 TPMT
nilotinib	UGT1A1
pazopanib	HLA-B*57:01 UGT1A1
sacituzumab govitecan-hziy	UGT1A1
tamoxifen	CYP2D6
thioguanine	NUDT15 TPMT


Oncology: A Case Example

- In late 2018, Lynn was diagnosed with an early stage bowel cancer following routine screening.
- In January 2019, Lynn had a successful bowel resection surgery. Her doctors recommended chemo to knock out any residual cells.
- In March 2019, Lynn had her first ...and last dose of intravenous flourouracil (5-FU).
- Lynn died less than 4 weeks later, but NOT from her cancer.
- What happened?

"Her last weeks were agony," Chris says. "Her entire digestive tract was burnt, as if by acid. She had constant nausea and diarrhea and couldn't process food. No one warned us this might happen. Yet as I know now, Lynn's death was avoidable."

Oncology: A Case Example

Outcome

- Like an estimated 5-8% of patients, Lynn produced less of a liver enzyme called dihydropyrimidine dehydrogenase or DPD, 1 in 100 to 1 in 1000 patients produce no enzyme.
- Without DPD, 5FU stays in the body and results in extensive toxicity.

DPYD Testing Can Reduce Treatment-related Mortality

Pathogenic DPYD Variants and Treatment-Related Mortality in Patients Receiving Fluoropyrimidine Chemotherapy: A Systematic Review and Meta-Analysis

```
Bhavina B Sharma # 1, Karan Rai # 2, Heather Blunt 3, Wenyan Zhao 4, Tor D Tosteson 4 5, Gabriel A Brooks 1 5

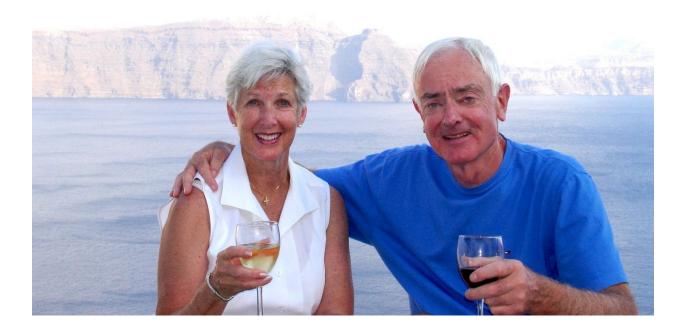
Affiliations + expand

PMID: 34506675 DOI: 10.1002/onco.13967 Paperpile

Free article
```

Carriers of pathogenic DPYD gene variants had a **25.6 times** increased risk of treatment-related death (95% CI, 12.1-53.9; p < .001).

EMA Has Recommended DPD testing for 5-FU Since 2020


EMA has recommended that patients should be tested for the lack of the enzyme dihydropyrimidine dehydrogenase (DPD) before starting cancer treatment with fluorouracil given by injection or infusion (drip) or with the related medicines, capecitabine and tegafur.

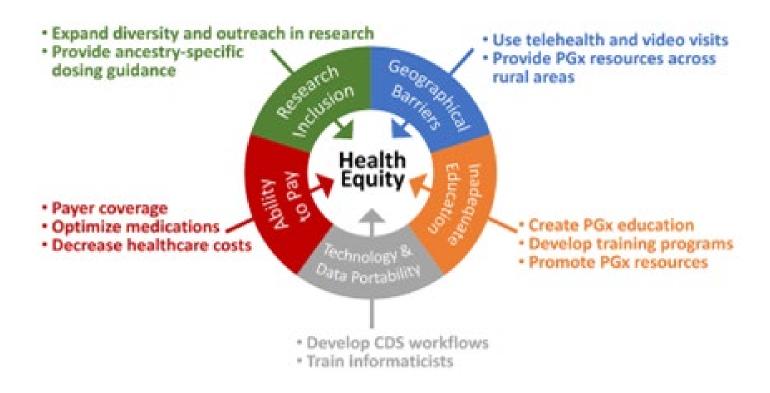
OHSU to Pay \$1 Million, Promises Change to Settle Lawsuit from Widow of Cancer Patient

By Fedor Zarkhin | The Oregonian/OregonLive

David McIntyre had a fatal reaction to OHSU's chemotherapy for his cancer, his wife, left, claims in a lawsuit filed against the university.

https://www.oregonlive.com/health/2022/05/ohsu-to-pay-1-million-promises-change-to-settle-lawsuit-from-widow-of-cancer-patient.html

Challenges and Strategies for Implementing Genomic Services in Diverse Settings


- Prioritizing integration of genomics into the EHR
- Improving clinicians' knowledge and belief about genomic medicine
- Engaging patients to participate in the genomic medicine projects

Closing Disparity Gaps in PGx

- Inadequate Education
- Ability to Pay
- Geographical Barriers
- Research Inclusion
- Technology and Data Portability

Formea CM, Schultz AJ, Empey PE.Pharmacists closing health disparity gaps through pharmacogenomics. J Am Coll Clin Pharm. 2022;5(8):844-852.

Clinic Level

Local Level

National Level

What are the Ethical and Practical Implications of Pharmacogenomics?

When educated about pharmacogenomics most of a diverse group of community participants agreed:

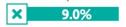
- physicians should inform patients of all pertinent available tests for a specific problem, including genetic testing.
- the decision to use a particular test, including genetic tests, rests with the patient.
- insurance companies are obligated to understand the benefits offered by the tests.

American Society for Pharmacovigilance (ASP) and the Hope and Healing Center & Institute (HHCI) Community Dialogue: What are the Ethical and Practical Implications of Pharmacogenomics? Final Report November 19, 2020

Are you testing all patients who could benefit from genetic testing?

Guideline criteria alone miss a broad swath of patients.

Two recent studies indicate that the current clinical criteria for genetic testing are restricting the detection of almost half of the variants in cancer patients.


Annals of Surgical Oncology

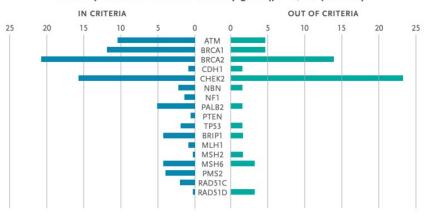
In a study of 4,196 Medicare cancer patients, Invitae found that positive results are nearly as high in patients who did not meet criteria for testing as in patients who met criteria.¹

Positive rate for patients in criteria

Positive rate for patients out of criteria

Journal of Clinical Oncology

Invitae and TME Breast Care Network analyzed the results of 1,000 breast cancer patients and found that positive results are nearly as high in patients who did not meet criteria for testing as in patients who met criteria.²


Positive rate for patients in criteria

Positive rate for patients out of criteria

Clinically actionable variant count by gene (per 1,000 patients)¹

Invitae recommends testing all at-risk patients, whether or not they meet criteria.

Lab Selection Can Impact Affordability & Access

- How many payers is the lab in-network with?
- Do they provide benefits investigations with estimated out-of-pocket?
- Do they offer affordable patient-pay options?
- Is there a patient assistance program for those with financial need and no insurance coverage?

Is Variant Coverage Appropriate for Your Patients?

Some labs only test this variant

DPYD Variant HGVS Other Names	Ref. SNP	Prevalence (Ethnicity)	Impact
c.1905+1G>A DPYD*2A IVS14+1G>A	rs3918290	1.46% (European-Caucasian) ²⁷ 2.7% (American-Caucasian) ⁴⁰ 5.5% (Iranian) ³⁸ 0.05% (South Asian) ⁴⁵ Absent (Japanese) ³¹⁻³³	CPIC: Poor metaboliser ¹¹ OR 5.42 increased toxicity in Caucasian carriers ²⁷ No increase in toxicity compared to wild type in Iranian carriers ³⁸
c.2846A>T p.D949V	rs67376798	I.47% (European-Caucasian) ²⁷ I.8% (American-Caucasian) ⁶² 0.07% (South Asian) ⁴⁵ Absent (Japanese) ^{32,33}	CPIC: Intermediate metaboliser ¹¹ OR 8.18 increased toxicity in Caucasian carriers ²⁷
c.1236G>A p.E412=	rs56038477	4–6% (European-Caucasian) 13,63 I.4% (South Asian) 45 Absent (Japanese) 32,33	CPIC: Intermediate metaboliser ¹¹ Adj RR 1.59 in Caucasian carriers ¹³
c.1679T>G DPYD*13 p.1560S	rs55886062	0.2% (European Caucasian) 13 Absent (Japanese) 31-33	CPIC: Poor metaboliser ¹¹ Adj RR 4.4 in Caucasian carriers ¹³

c.577A>G	rs115232898	6.4% (African-American) ³⁶	CPIC: Intermediate metaboliser 11
p.Y186C			Profound FP related toxicity in case studies ^{35,65}
			46% lower DPD activity than wild type in carriers, ethnicity not
			specified ⁶⁴

Does the Lab Offer Free Family Variant Testing?

Family Variant Testing Barriers

- Lack of knowledge of disease risk
- Cost
- Family education barriers
- Lack of access to genetic resources

Why this matters:

- One test result can impact an entire family
- Blood relatives have up to 50% chance of having the same variant

© 2022 Invitae Corporation. All Rights Reserved.

Does the Lab Share Data?

- Classifications should be deposited into the ClinVar database for peer review.
- Data submissions should include evidence.
- Review commercial laboratory contributions to ClinVar.
- Clinvar is monitored and ran by the National Institute of Health (NIH)

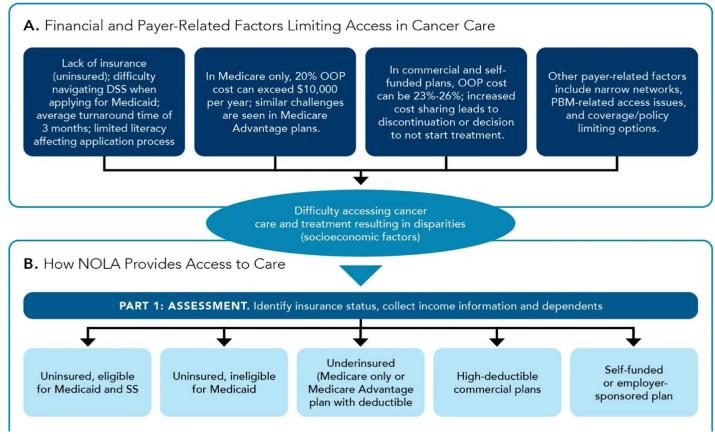
ACMG STATEMENT

Genetics inMedicine

© American College of Medical Genetics and Genomics

Laboratory and clinical genomic data sharing is crucial to improving genetic health care: a position statement of the American College of Medical Genetics and Genomics

Submitter	Maximum review status	Total submissions	Submissions with interpretations	Total Genes	Last updated
<u>Invitae</u>	Assertion criteria	606139	606136	14181	Feb 08, 2022
GeneDx	Assertion criteria	309532	309402	29449	Mar 16, 2022
Illumina Laboratory Services; Illumina	Assertion criteria	208884	208884	5749	Dec 20, 2021
Ambry Genetics	Assertion criteria	72616	72616	1722	Feb 03, 2022
Color Health, Inc	Assertion criteria	48462	48462	85	Jan 07, 2022
Eurofins NTD LLC (GA)	Assertion criteria	45028	45028	2420	Sep 19, 2018
Natera, Inc.	-	36117	36117	375	Feb 09, 2022
OMIM; Johns Hopkins University	-	33671	33671	5612	Mar 15, 2022
CeGaT Praxis fuer Humangenetik Tuebingen	Assertion criteria	28698	28698	7018	Jan 24, 2022
Nilou-Genome Lab	Assertion criteria	27747	27747	2484	Mar 06, 2022
<u>Laboratory for Molecular Medicine; Partners HealthCare Personalized Medicine</u>	Assertion criteria	24470	24396	1796	Jun 10, 2021
Women's Health and Genetics/Laboratory Corporation of America; LabCorp	Assertion criteria	24211	24188	1325	Mar 11, 2022
Genetic Services Laboratory: University of Chicago	Assertion criteria	23609	23609	1686	Feb 18, 2022
Counsyl	Assertion criteria	20976	20976	350	Aug 05, 2019
<u>PreventionGenetics</u>	Assertion criteria	18417	18417	1573	Dec 20, 2021
Cincinnati Children's Hospital Medical Center Genetics and Genomics Diagnostic Laboratory; Cincinnati Children's Hospital Medical Center	Assertion criteria	17788	17788	19580	Apr 27, 2020
Quest Diagnostics Nichols Institute San Juan Capistrano	Assertion criteria	17643	17643	17098	Feb 10, 2022
Athena Diagnostics Inc	Assertion criteria	17228	17228	822	Sep 13, 2021
ARUP Laboratories, Molecular Genetics and Genomics; ARUP Laboratories	Assertion criteria	16700	16700	1251	Mar 09, 2022


Clinic Level

Local Level

No One Left Alone (NOLA) at Carolina Blood and Cancer Care Associates

A program to provide financial assistance and access to cancer care

https://www.ajmc.com/view/addressing-cancer-health-disparities-in-a-multilateral-collaboration-in-an-independent-community-cancer-clinic-translating-words-into-action

No One Left Alone (NOLA) at Carolina Blood and Cancer Care Associates

No insurance	Identify if patient qualifies for any state or federal program (ie, Medicare, Medicaid, ACA tax subsidy). Work with local county 501(c)(3).	Help complete all forms for program. Create path for facilitation. Provide legislative assistance to navigate (including legal funds).
Medicaid program	Verify benefits. Ensure that DSS application is processed. Reach out to congressional office. Ask if patient is LIS/dual eligible.	Verify if prescribed tests/medication(s) are approved/indicated for diagnosis.
Medicare eligible (disabled)	Verify eligibility. Guide patients on how to enroll. Seek assistance for Part B premium.	Verify if patient is retiring soon; if so, and has Part A only, provide guidance for Part B and Medigap. Look at LIS/dual eligibility.
Medicare: Part A/B, no Medigap	Identify if patient is dual eligible for Medicaid or Medicare secondary payer plan; if so, provide resources.	If not eligible, seek foundation assistance for Medigap payment and work with local foundations to support, if eligible.
Medicare: Medigap	Generally, all services are covered. Ensure benefits verification and eligibility.	Confirm Part D; if not, guide appropriately. Provide assistance for patients in Medicare Part D coverage gap, aka "donut hole."
Medicare Advantage plan	Go over insurance plan with patient during open enrollment to identify where they can save money (ie, changing insurance).	If changing back to Medicare, add a Part D plan and supplemental plan. If changing Advantage plan, facilitate appropriate plan.
Commercial and insurance exchanges	Verify prescribed medication(s) are approved/ indicated for diagnosis/place in therapy. Submit predetermination or prior authorization if necessary.	Identify if free medication is available, when necessary. Complete and submit applicable form(s). Identify patient's responsibility for prescribed medication(s).

- Identified 700+ patients who did not have cancer screening, making arrangements to test
- Raised ~\$2.3M last year for OOP cost or free drugs; created insurance fund
- Pilot already in place with a large lab with purpose to identify gaps in germline tests; paper pending
- Three large studies; reached
 >80% NGS testing rate

32

Phase 3 soon

https://www.ajmc.com/view/addressing-cancer-health-disparities-in-a-multilateral-collaboration-in-an-independent-community-cancer-clinic-translating-words-into-action

© 2022 Invitae Corporation. All Rights Reserved.

CA Senate Bill 1191 Medi-Cal: Pharmacogenomic Testing

Author: Senator Pat Bates

What S.B. 1191 Does...

- Provides Medi-Cal coverage for PGx testing for patients already taking, or being prescribed, medications included within CPIC A, A/B, or B Guidelines, or the FDA Label;
- Clarifies that tests can be ordered by an enrolled Medi-Cal clinician or pharmacists pursuant to Business and Professions Code Section 4052(a)(12);
- Ensures panel tests are reimbursed based on the use of one HCPCS or CPT code per test; and
- Allows for flexibility in permissible locations for sample collection.

American Cancer Society Biomarker Bills

What the Biomarker Bills Do

Biomarker testing must be covered for the purposes of diagnosis, treatment, appropriate management, or ongoing monitoring of an enrollee's disease or condition when the test is supported by medical and scientific evidence, including, but not limited to:

- 1. Labeled indications for an FDA-approved or -cleared test or indicated tests for an FDA-approved drug;
- 2. Centers for Medicare and Medicaid Services (CMS) National Coverage Determinations and Medicare Administrative Contractor (MAC) Local Coverage Determinations; or
- 3. Nationally recognized clinical practice guidelines and consensus statements.

Enacted States to Date

State	Active Date	Note
Illinois	1/1/2022	Applies to group or individual policy of accident and health insurance or managed care plan
Louisiana	1/1/2022	Limited to advanced or metastatic stage 3 or 4 cancer
Arizona	1/1/2023	Applies to hospital service corporation or medical service corporation; health care services organization; disability insurer; group or blanket disability insurer; or administration and its contractors
Rhode Island	1/1/2024	Applies to every individual or group health insurance contract; or every individual or group hospital or medical expense insurance policy

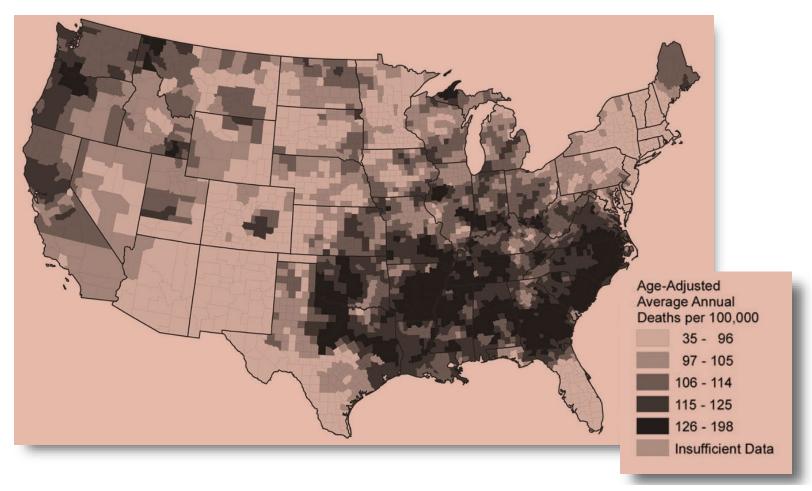
Introduced: CA, MN, NY, OH, WA

https://www.ilga.gov/legislation/publicacts/fulltext.asp?Name=102-0203
http://www.legis.la.gov/Legis/ViewDocument.aspx?d=1227189
https://legiscan.com/RI/text/S2201/2022
https://legiscan.com/AZ/text/HB2144/2022

Clinic Level

Local Level

A consortium of community-based health systems (e.g. CommonSpirit, WellStar) lead by Morehouse School of Medicine giving access to precision prevention, precision medicine, and clinical trials-matching tools in the "Black Belt"


CARhES

Comprehensive Approaches to Reimagine health Equity Solutions

Why is Democratizing Precision Medicine Important to Morehouse School of Medicine?

- Provide services to underrepresented populations, at the center of a chronic disease belt.
- Some of the highest morbidity & mortality rates in United States.
- The incidence of COVID-19, diabetes, cancer, and stroke in GA are higher than US.
- The mortality rates of these diseases/conditions are 10 to 40% greater for African American.

Morehouse School of Medicine envisions leading the advancement and development of <u>precision medicine therapies</u> and <u>diagnostics</u> for African Americans to address long-standing health disparities in the BLACK BELT.

Ambitious Solutions Start Small, Build Momentum

Phase 1 is broken out into education, clinical care, and research programs

Education

MS in Genetic Counseling (Fall 2023)

MSM owns implementation

Precision Medicine Graduate Certificate program for providers

MS/PhD in Bioinformatics & Al (Fall 2023)

Clinical Care

Joint implementation

Preventatively Screen 1000 Patients/Participants w.o. Cancer Diagnosis in GI, Gynecology & PCPs

Screen 100 ovarian cancer patients & family members (100% eligible)

Screen 200 breast cancer patients & family members (mixed eligibility)

Total Cancer Care (ongoing)

Research Portfolio

Trulieve Medical Cannabis Oil & Chronic Pain Study (Fall 2022)

FDA Labeling and Guidelines Can Impact Access

NCCN Guidelines Panel: Clinical Practice Guidelines in Oncology: Colon Cancer Version 1.2022; Clinical Practice Guidelines in Oncology: Rectal Cancer Version 1.2022; Clinical Practice Guidelines in Oncology: Anal Carcinoma Version 1.2022

Dear NCCN Panel Members,

Based on published evidence, we are writing to request review of the following proposed changes to the C in Oncology:

Specific changes proposed:

Colon Cancer Version 1.2022 Guideline, COL-D add footnote to all regimens that contain 5-FU or capecit targeted germline DPYD variant testing as a routine component of pre-treatment workup for all patients lik capecitabine, including patients with colon cancer appropriate for resection and patients with suspected or synchronous adenocarcinoma. Recommend dosing according to Clinical Pharmacogenetics Implementation guidelines for DPYD carriers. Key DPYD variants include but are not limited to (DPYD*2A (rs3918290), JDPYD D949V (rs67376798), and DPYD HapB3 (rs56038477 or rs75017182)."

Rectal Cancer Version 1.2022 Guideline, REC-F add footnote to all regimens that contain 5-FU or capecit germline DPYD variant testing as a routine component of pre-treatment workup for all patients likely to reincluding patients with rectal cancer appropriate for resection and patients with suspected or proven metast Recommend dosing according to Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelin DPYD variants include but are not limited to (DPYD*2A (rs3918290), DPYD*13 (rs55886062), DPYD D9 DPYD HapB3 (rs56038477 or rs75017182)).

On MS-40, in the Systemic Therapy for Advanced or Metastatic Disease section add the "Severe Fluoropy Toxicity" section from the NCCN Colon Cancer Guidelines located on MS-41-42.

Division of Dockets Management Food and Drug Administration Department of Health and Human Services 5630 Fishers Lane, Rm. 1061 Rockville, MD 20852

Subject: Citizen Petition Concerning the Use of Fluorouracil and Xeloda Chemotherapy Drugs

The undersigned submits this petition to request the Commissioner of Food and Drugs revise the package inserts for Fluorouracil and Xeloda (Capecitabine).

A. Action Requested

Revise the Drug Label inserts for Fluorouracil and Xeloda (Capecitabine) by:

- Recommending Pre-Treatment Testing to Identify Patients with Dihydropyrimidine Dehydrogenase (DPD) Deficiency and include the recommendation in the content of the drug labels dealing with:
 - Patient Counseling
 - b. Dosage and Administration
 - c. Box Warning.
- Revising the Patient Counseling Information content to: Shift responsibility for identifying DPD
 deficiency from the patient to the prescribing physicians who should also discuss with patients the risk
 associated with DPD deficiency before the start of treatment.
- Revising the Dosage and Administration content to: Recommend treating physicians pre-screen patients for DPD deficiency and adapt the treatment plan if partial or complete DPD deficiency is identified.
- 4) Adding a Box Warning that:

© 2022 Invitae Corporation. All Rights Reserved.

H.R. 6875 The Right Drug Dose Now Act

Primary Sponsor: Representative Eric Swalwell (D-CA-15)

Original Cosponsor: Representative Tom Emmer (R-MN-6)

The Right Drug Dose Now Act

- 1. Require an assessment and update of the **National Action Plan** for Adverse Drug Event Prevention;
- 2. Create **educational campaigns** on preventing adverse drug events, in part through the use of evidence-based PGx information.
- Incentivize updates to electronic health record systems to ensure that healthcare providers are alerted to interactions between medications and genes when making prescribing decisions;
- 4. Enhance **reporting systems** that would assist with the tracking of PGx-associated adverse drug events; and
- 5. Authorize sustained **funding** for PGx implementation research and guideline development.

Q&A

Thank you!

kristine.ashcraft@invitae.com 206-930-9062

