

Harry P. Erba, MD, PhD

Professor of Medicine
Division of Hematologic Malignancies and Cellular Therapy
Director, Duke Leukemia Program
Chair, SWOG Leukemia Committee
Duke University
Durham, North Carolina

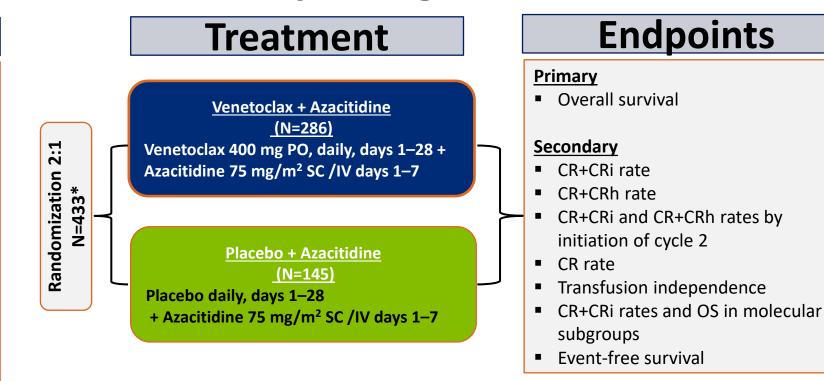
Dr Erba graduated from Yale University with a Bachelor of Science degree in Biology. He earned his medical degree and doctor of philosophy in Biophysics from Stanford University School of Medicine in California. He completed his internship, residency and fellowship training at the Brigham and Women's Hospital and Harvard Medical School. He is currently Professor of Medicine in the Division of Hematologic Malignancies and Cellular Therapy at Duke University. He serves as the Director of the Leukemia Program at Duke as well as the Chair of the Leukemia Committee of the Southwest Oncology Group.

Dr Erba is interested in the clinical development of novel therapies for acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative neoplasms (such as chronic myeloid leukemia, polycythemia vera, essential thrombocythemia, and myelofibrosis), and acute lymphoblastic leukemia. He has served as the principal investigator for studies on small-molecular inhibitors, antibody-drug conjugates, and cytotoxic chemotherapy. Dr Erba's research has appeared in numerous peer-reviewed publications, including Blood, Journal of Clinical Oncology, Leukemia & Lymphoma, Lancet Haematology, and Clinical Lymphoma, Myeloma & Leukemia.

Most Important Advances in Myeloid Cancers Two available drugs in a single AML indication: How do you choose?

Harry P. Erba, MD PhD
Director, Leukemia Program
Duke University

VIALE-A Study Design


Eligibility

Inclusion

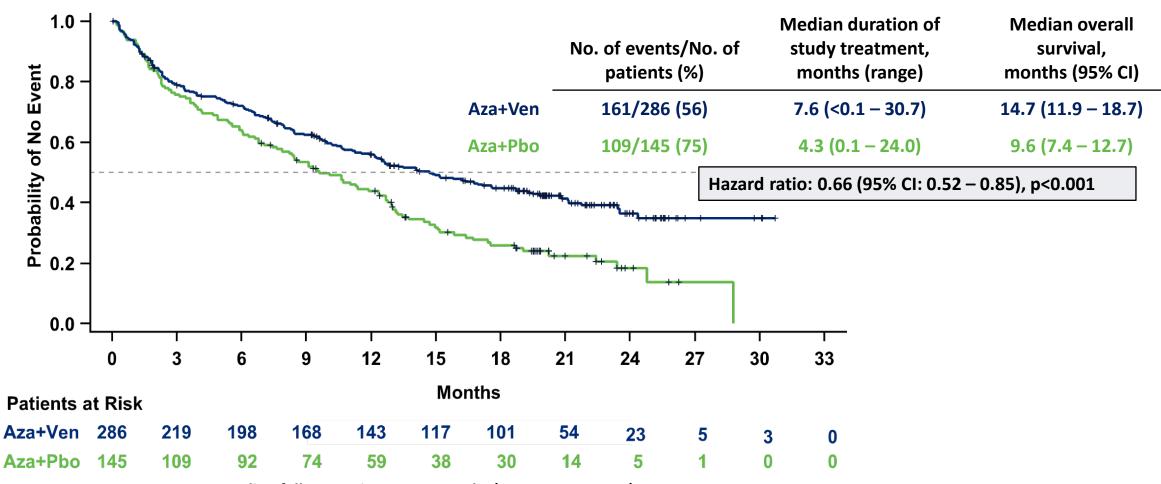
- Patients with newly diagnosed confirmed AML
- Ineligible for induction therapy defined as **either**
 - ♦ ≥75 years of age
 - ❖ 18 to 74 years of age with at least one of the co-morbidities:
 - CHF requiring treatment or Ejection Fraction ≤50%
 - Chronic stable angina
 - DLCO \leq 65% or FEV1 \leq 65%
 - ECOG 2 or 3

Exclusion

- Prior receipt of any HMA, venetoclax, or chemotherapy for myelodysplastic syndrome
- Favorable risk cytogenetics per NCCN
- Active CNS involvement

Randomization Stratification Factors

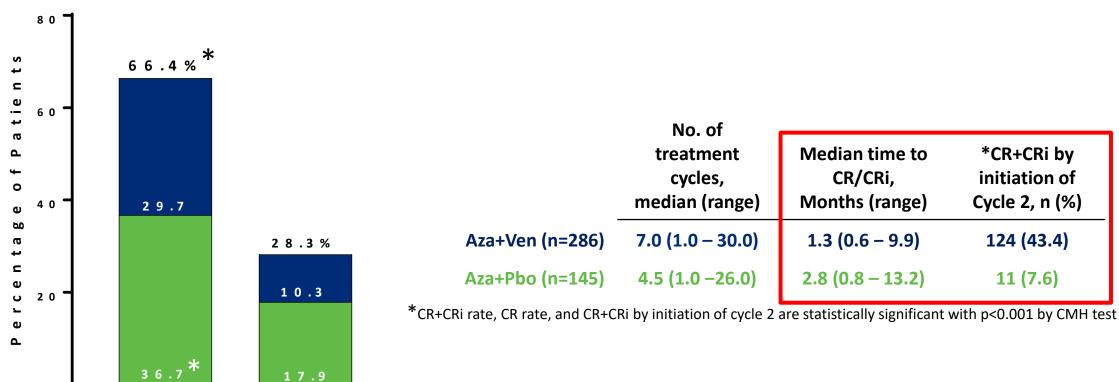
Age (<75 vs. ≥75 years); Cytogenetic Risk (intermediate, Poor); Region


Venetoclax dosing ramp-up

Cycle 1 ramp-up Day 1: 100 mg, Day 2: 200 mg, Day 3 - 28: 400 mg Cycle 2 — Day 1-28: 400 mg

DiNardo C, et al. *N Engl J Med* 2020; 383(7): 617-629.

VIALE A: Overall Survival



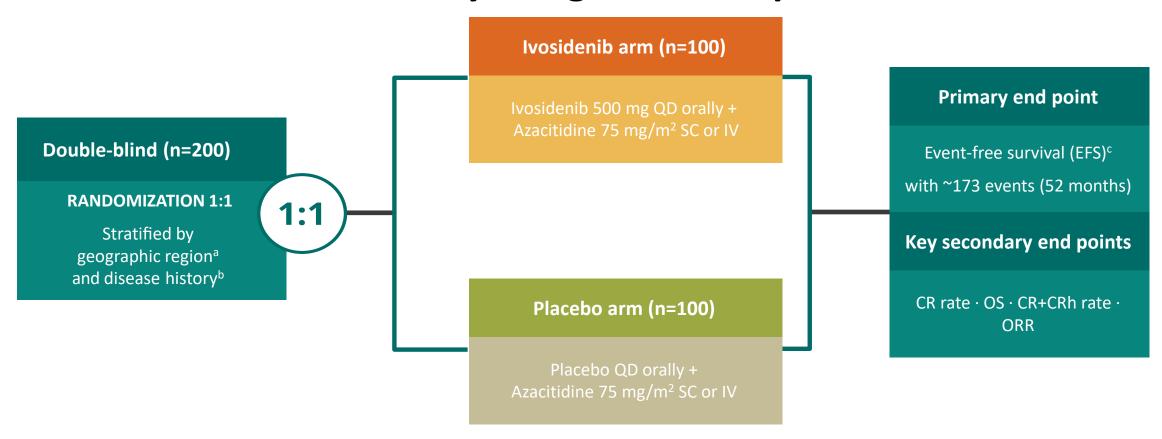
Median follow-up time: 20.5 months (range: <0.1 – 30.7)

DiNardo C, et al. N Engl J Med 2020; 383(7): 617-629.

VIALE A: Composite Response Rate (CR+CRi)

Aza: Azacitidine; Pbo: Placebo; Ven: Venetoclax; CR: Complete remission; CRi: CR with incomplete-count recovery; CR was defined as absolute neutrophil count >10³/ μ L, platelets >10⁵/ μ L, red cell transfusion independence (TI), and bone marrow with <5% blasts; CRi was defined as all criteria for CR, except for neutropenia $\leq 10^3/\mu$ L or thrombocytopenia $\leq 10^5/\mu$ L.

CR + CRi rate was compared using Cochran-Mantel-Haenszel (CMH) test stratified by age (18 – < 75, \geq 75) and cytogenetic risk (intermediate, poor).

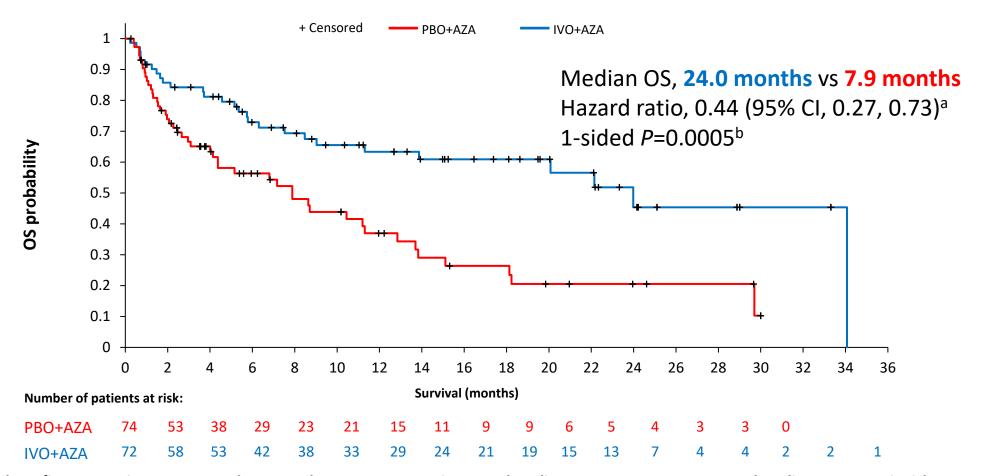

DiNardo C, et al. N Engl J Med 2020; 383(7): 617-629.

Aza+Ven

Aza+Pbo

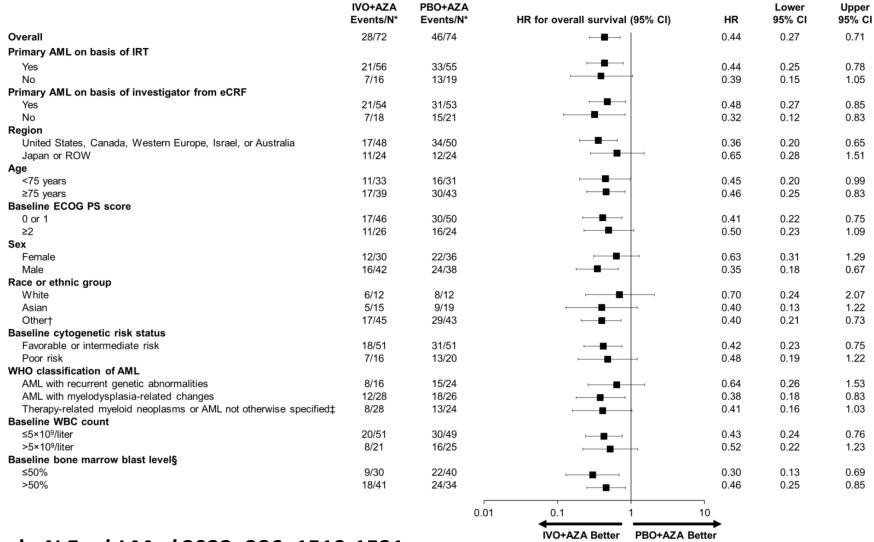
AGILE: study design and end points

- As of the data cutoff date (18March2021), 146 patients have been randomized (IVO+AZA, n=72; PBO+AZA, n=74).
- As of 12May2021, the IDMC recommended to halt enrollment based on a noted difference in clinical importance between the treatment groups, not related to safety.
- A total of 148 patients were enrolled at 155 active sites in 20 countries.

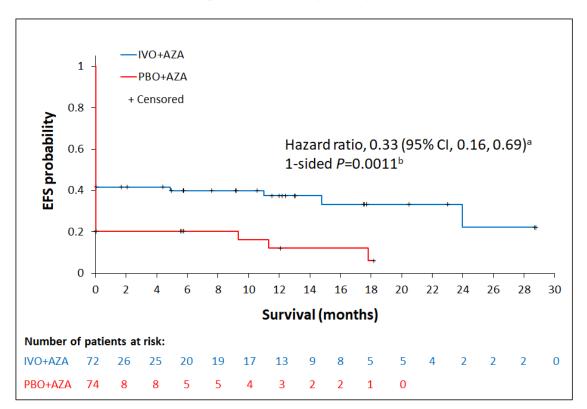


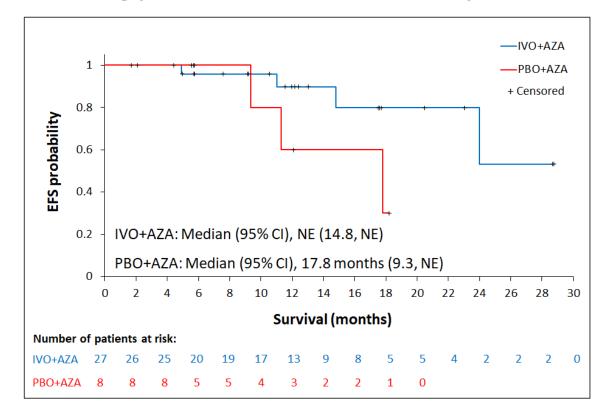
AGILE: Baseline demographic and disease characteristics

Characteristic	IVO+AZA (n=72)	PBO+AZA (n=74)
Median (range) age, years	76 (58–84)	75.5 (45–94)
Sex, n (%) Male/Female	42 (58.3)/30 (41.7)	38 (51.4)/36 (48.6)
ECOG PS score, n (%)		
0/1/2	14 (19.4)/32 (44.4)/26 (36.1)	10 (13.5)/40 (54.1)/24 (32.4)
Disease history (per investigator), n (%)		
De novo AML	54 (75.0)	53 (71.6)
Secondary AML ^a	18 (25.0)	21 (28.4)
Median (range) mIDH1 VAF in BMA, % (range)b	36.7 (3.1–50.5)	35.5 (3.0–48.6)
Cytogenetic risk, n (%) ^c		
Favorable/intermediate/poor	3 (4.2); 48 (66.7); 16 (22.2)	7 (9.5); 44 (59.5); 20 (27.0)
Median (range) bone marrow blasts, %	54 (20–95)	48.0 (17–100)


AGILE: IVO+AZA significantly improves OS compared with PBO/AZA

OS benefit was consistent across subgroups: de novo status, region, age, baseline ECOG PS score, sex, race, baseline cytogenetic risk status, WHO classification of AML, baseline white blood cell count, baseline BM blast percentage.

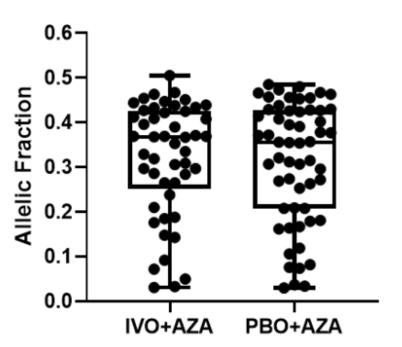

AGILE: Overall Survival in ITT Population in Patient Subsets

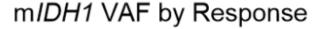

AGILE: EFS in the intent-to-treat population

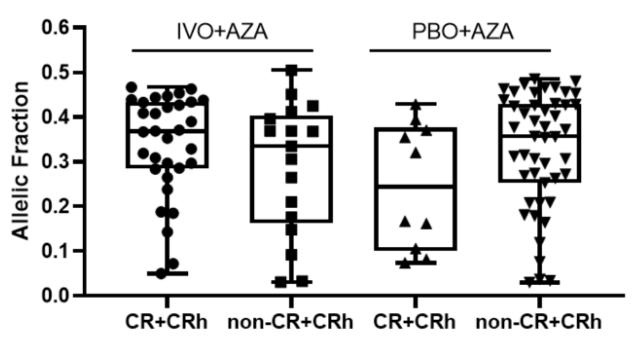
IVO+AZA significantly improves EFS

EFS among patients who achieved CR by 24 weeks

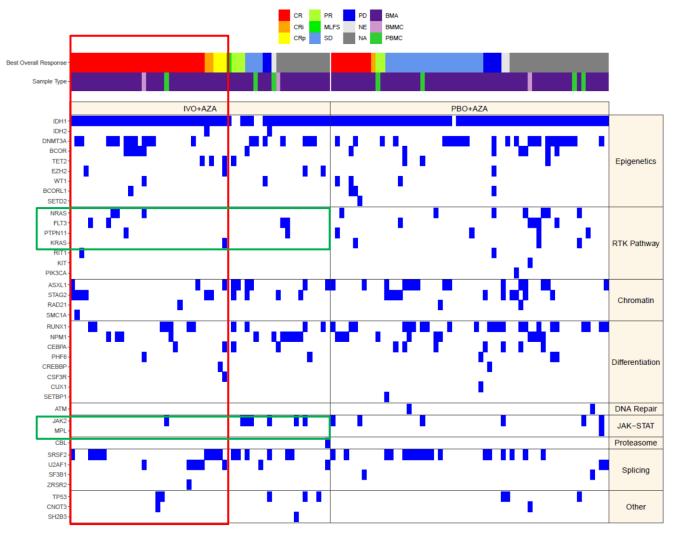
- Patients who did not achieve CR by week 24 were considered to have had an event at day 1 of randomization.
- EFS benefit was consistent across subgroups: de novo status, region, age, baseline ECOG PS score, sex, race, baseline cytogenetic risk status, WHO classification of AML, baseline white blood cell count, baseline percentage of bone marrow blasts.


AGILE: Response Rate, Response Duration, and Time to Response


Response Category	Ivosidenib + Azacitidine (N = 72)	Placebo + Azacitidine (N = 74)	
Complete remission			
Percentage of patients (95% CI)	47 (35–59)	15 (8–25)	+
Odds ratio vs. placebo (95% CI); P value	4.8 (2.2–10.5); two-sided P<0.001		
Median duration of complete remission (95% CI) — mo	NE (13.0-NE)	11.2 (3.2–NE)	—
Median time to complete remission (range) — mo	4.3 (1.7–9.2)	3.8 (1.9–8.5)	—
Complete remission or complete remission with partial hematologic recovery			
No. of patients	38	13	
Percentage of patients (95% CI)	53 (41–65)	18 (10–28)	+
Odds ratio vs. placebo (95% CI); P value	5.0 (2.3–10.8); two-sided P<0.001		
Median duration of complete remission or complete remission with partial hematologic recovery (95% CI) — mo	NE (13.0–NE)	9.2 (5.8–NE)	+
Median time to complete remission or complete remission with partial hematologic recovery (range) — mo	4.0 (1.7–8.6)	3.9 (1.9–7.2)	+



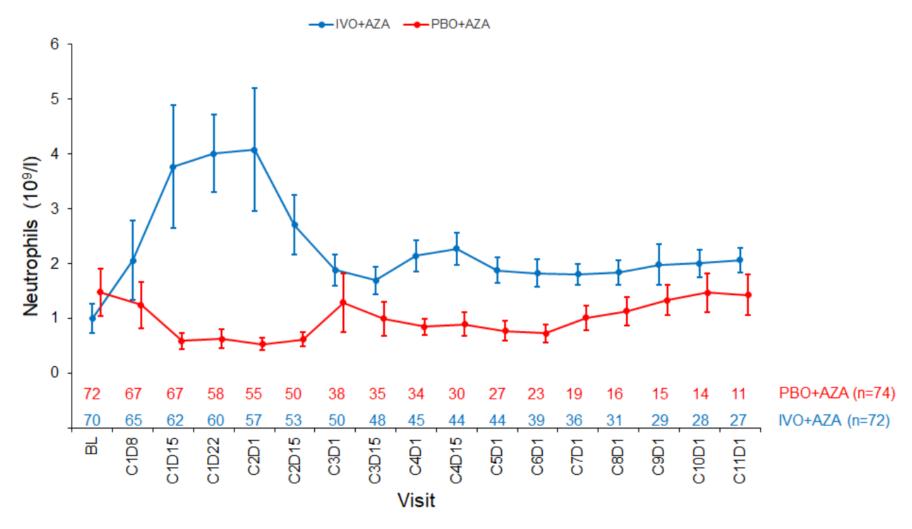
AGILE: mIDH1 VAF and Response



AGILE: Response based on co-mutations

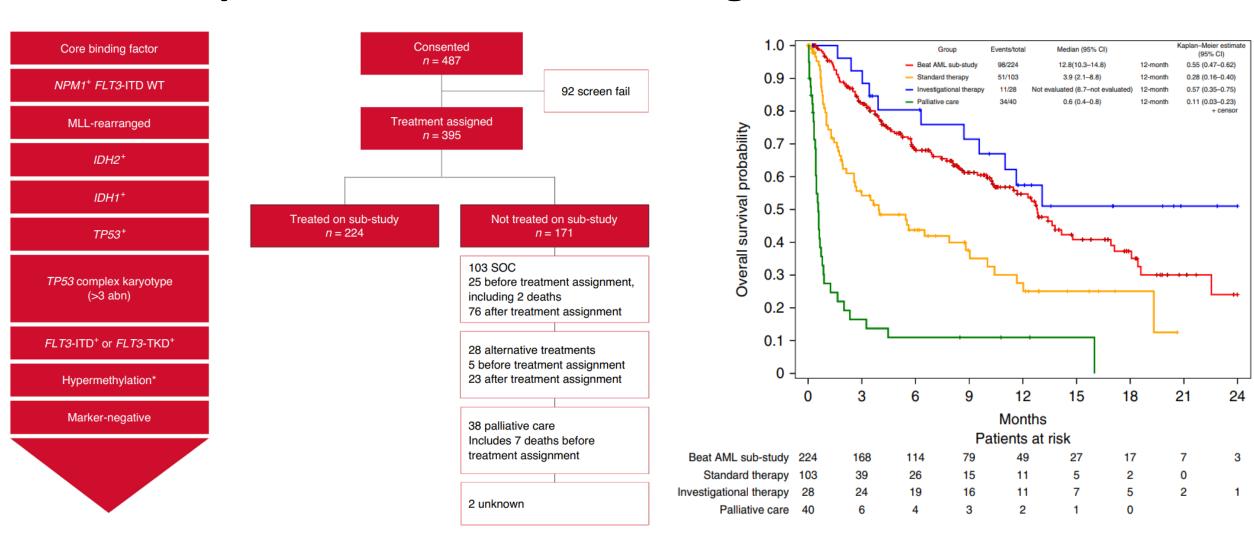
Responses seen among subjects with RTK and RAS/MAP pathway mutations

AGILE: Treatment-emergent adverse events (TEAEs)

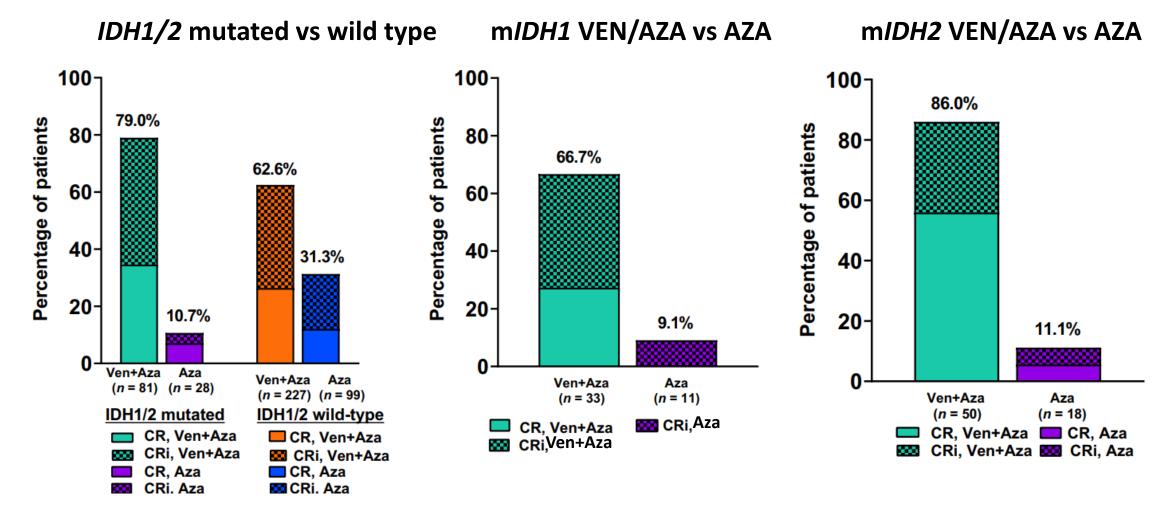


	IVO+AZA (n=71)		PBO+AZ	A (n=73)
	Any grade	Grade ≥3	Any grade	Grade ≥3
Any TEAE, n (%)	70 (98.6)	66 (93.0)	73 (100)	69 (94.5)
Any hematologic TEAEs, n (%)	55 (77.5)	50 (70.4)	48 (65.8)	47 (64.4)
Most common hematologic TEAEs (>20% ^a), n (%)				
Anemia	22 (31.0)	18 (25.4)	21 (28.8)	19 (26.0)
Febrile neutropenia	20 (28.2)	20 (28.2)	25 (34.2)	25 (34.2)
Neutropenia	20 (28.2)	19 (26.8)	12 (16.4)	12 (16.4)
Thrombocytopenia	20 (28.2)	17 (23.9)	15 (20.5)	15 (20.5)
Most common TEAEs (>20%a), n (%)				
Nausea	30 (42.3)	2 (2.8)	28 (38.4)	3 (4.1)
Vomiting	29 (40.8)	0	19 (26.0)	1 (1.4)
Diarrhea	25 (35.2)	1 (1.4)	26 (35.6)	5 (6.8)
Pyrexia	24 (33.8)	1 (1.4)	29 (39.7)	2 (2.7)
Constipation	19 (26.8)	0	38 (52.1)	1 (1.4)
Pneumonia	17 (23.9)	16 (22.5)	23 (31.5)	21 (28.8)
Bleeding, n (%)	29 (40.8)	4 (5.6)	21 (28.8)	5 (6.8)
Infections, n (%)	20 (28.2)	15 (21.1)	36 (49.3)	22 (30.1)

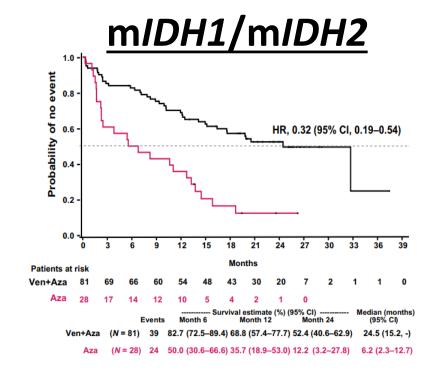
- TEAEs of special interest with IVO+AZA vs PBO+AZA included grade ≥2 differentiation syndrome (14.1% vs 8.2%) and grade ≥3 QT prolongation (9.9% vs 4.1%).
- Infections were less common with IVO+AZA (28.2%) compared with PBO+AZA (49.3%).
- There were no deaths deemed related to treatment.

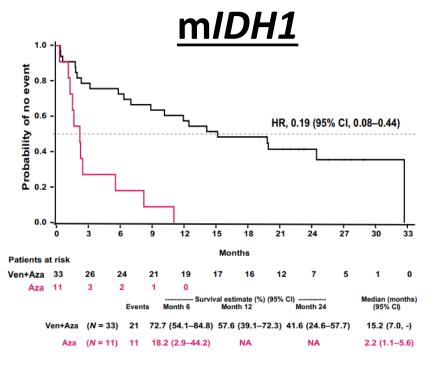


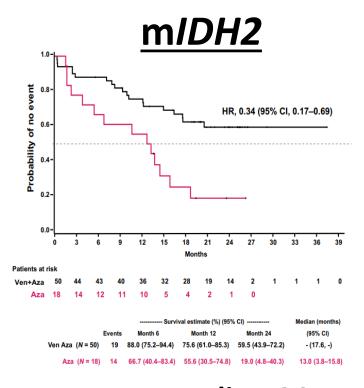
AGILE: Neutrophil Recovery from Baseline


Prospective Genomic Profiling in AML: BEAT AML

Burd A, et al. Nature Medicine 2020; 26: 1852


VEN/AZA in IC-Ineligible mIDH AML: Response Rates




Pollyea DA, et al. Clin Cancer Res. 2022; 28(13): 2753-2761

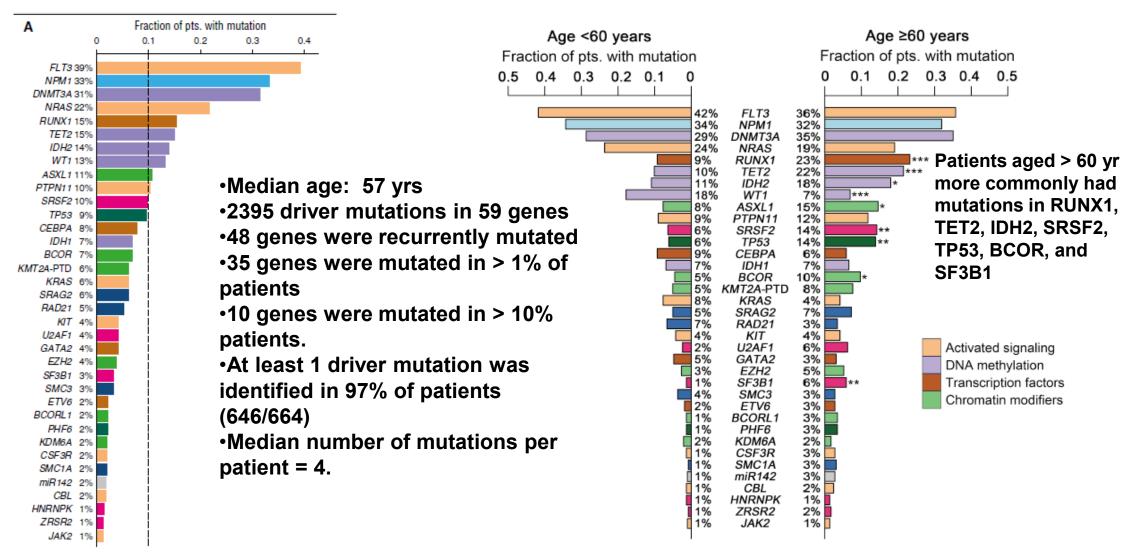
VEN/AZA in IC-Ineligible mIDH AML: Overall Survival

Median OSVen+Aza 24.5 monthsAza 6.2 months

Median OSVen+Aza 15.2 monthsAza 2.2 months

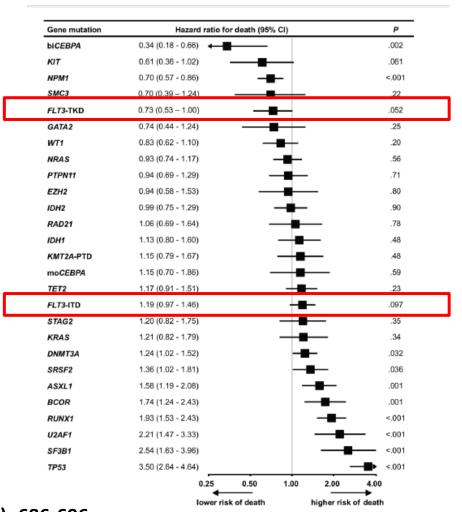
Median OSVen+Aza Not ReachedAza 13.0 months

Pollyea DA, et al. Clin Cancer Res. 2022; 28(13): 2753-2761

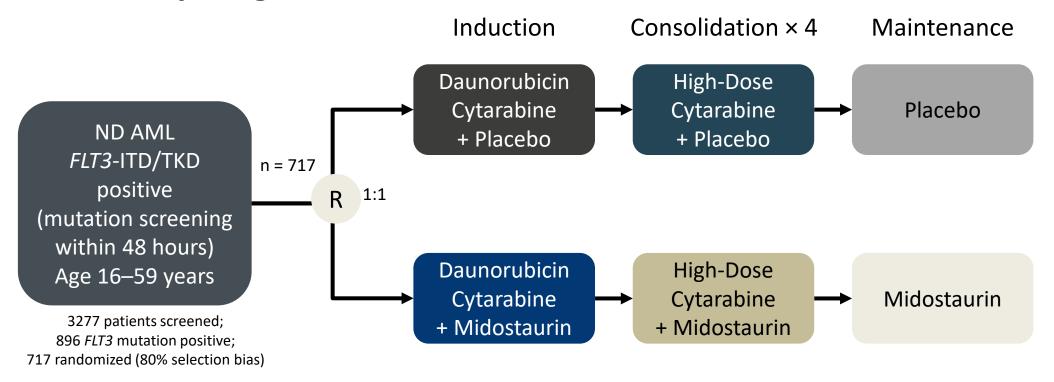


VEN/AZA vs IVO/AZA in IC-Ineligible mIDH1 AML

	VEN/AZA	IVO/AZA
Mutation agnostic	Yes	No
Response Rate	CR/CRi 67%	CR/CRh 53%
Time to response	1 month	4 month
Median overall survival	15 months	24 months
Options in second line	IVO (if mIDH1 present)	VEN/HMA
Toxicity	Myelosuppression, Tumor lysis syndrome	Differentiation syndrome, QT prolongation
Ease of administration	Dose modifications for cytopenias	


Mutational Profile in AML (664 Patients)

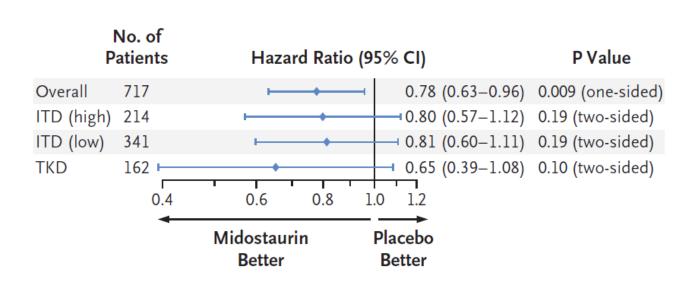
Metzeler KH, et al. *Blood* 2016; 128 (5): 686-696


Effect of Single Gene Mutations on Overall Survival in AML

Metzeler KH, et al. Blood 2016; 128 (5): 686-696

RATIFY (CALGB 10603): Chemotherapy + Midostaurin or Placebo in Newly Diagnosed Patients <60 Years With *FLT3*-Mutated AML

Collaboration with 13 international cooperative groups; 225 sites from 17 countries Alliance, SWOG, ECOG, NCIC CTG, GIMEMA, EORTC, AMLSG, SAL, OSHO, PETHEMA, CETLAM 9 academic *FLT3* screening laboratories worldwide

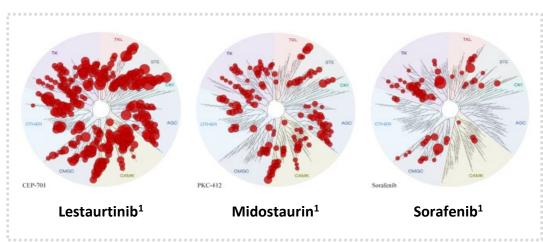


RATIFY (CALGB 10603): Overall Survival

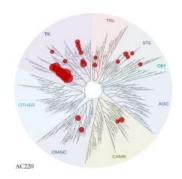
Median OS

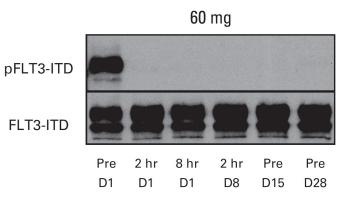
100 **Midostaurin** 74.7 mo (95% CI, 31.5–NR) **Placebo** 25.6 mo (95% CI, 18.6–42.9) 90-Probability of Survival (%) 80-One-sided P=0.009 by stratified log-rank test 70-60-**51%** Midostaurin 50-40-Placebo 44% 30-20-10-60 72 84 90 12 24 Months

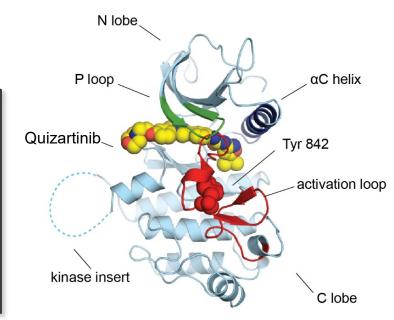
OS Subgroup Analysis


Potency and Selectivity of FLT3 Inhibitors

<i>FLT3</i> inhibitors	Tandutinib	Lestaurtinib	Midostaurin	Sorafenib	Quizartinib	Crenolanib	Gilteritinib
FLT3 inhibition (IC50, nM) ^[a]	220	3	< 10	58	1.1	0.15	1.6
Inhibits FLT3	ITD	ITD and TKD	ITD and TKD	ITD	ITD	ITD and TKD	ITD and TKD
Structure		H N N O HO		H H CI		O N N N N N N N N N N N N N N N N N N N	NH NH NH NH ₂
Other targets ^[b,c]	PDGFR6, KIT,	Multiple kinases, including JAK2,3 TRK A/B/C	Multiple kinases, including PKC, SYK, Flk-1, AKT, KIT, Fgr, SRC, PDGFR6, VEGFR1/2	Multiple kinases, including RAF, VEGFR1/2/3, PDGFR6, KIT, RET	KIT, PDGFRβ, CSF1R, RET	PDGFR6	LTK, ALK, AXL


c. Larrosa-Garcia M, et al. Mol Cancer Ther. 2017;16:991-1001.


Quizartinib (AC220): A Highly Potent and Selective FLT3 Inhibitor

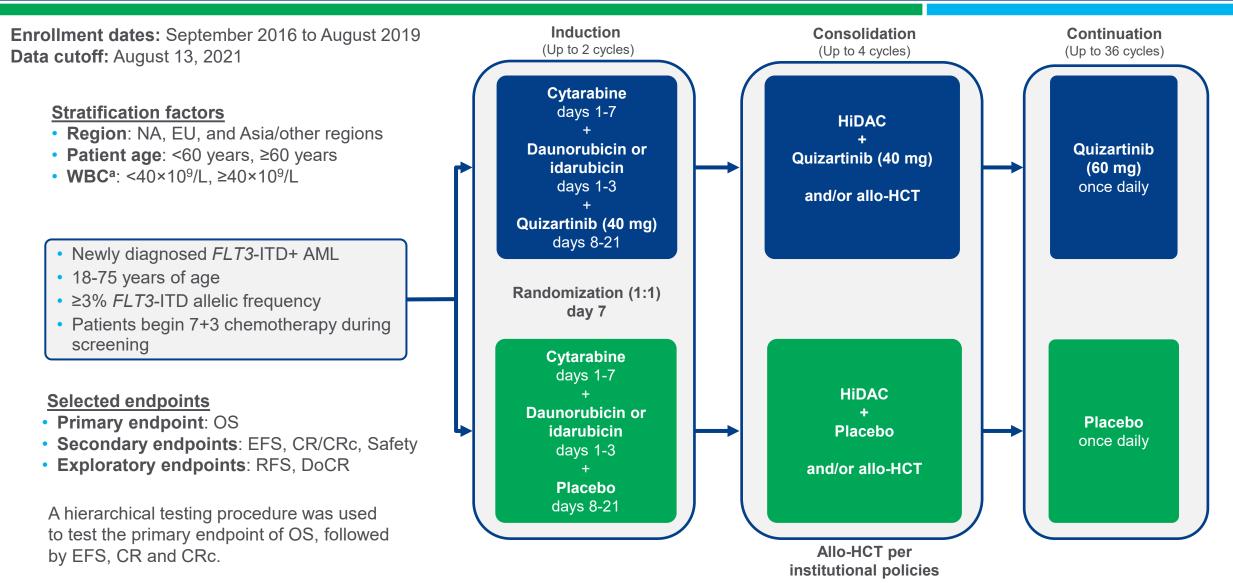


First-generation multikinase inhibitors²

Quizartinib¹
Second-generation
FLT3 inhibitor³

Quizartinib properties

- Type II FLT3 inhibitor, maintains inactive conformation. Active on ITD+ cells only.
- Oral, highly potent, selective³
- Nanomolar affinity (1.6 \pm 0.7 nM) against FLT3 3 and complete suppression of FLT3 phosphorylation in *ex vivo* PIA assays 4
- Highly selective for FLT3 when screened against 402 human kinases (other kinases with K_d within 10-fold that of FLT3 were closely related RTKs, eg, KIT)³
- 1. Davis MI, et al. Nat Biotechnol. 2011;29:1046-1051. 2. Stone R, et al. N Engl J Med. 2017;377:454-464.
- 3. Zarrinkar P, et al. *Blood*. 2009;114:2984-2992. 4. Cortes JE, et al. *J Clin Oncol*. 2013;31:3681-3687.


Quizartinib Prolonged Survival vs Placebo Plus Intensive Induction and Consolidation Therapy Followed by Single-Agent Continuation in Patients Ages 18-75 Years With Newly Diagnosed *FLT3*-ITD+ AML

Harry P. Erba,¹ Pau Montesinos,² Radovan Vrhovac,³ Elzbieta Patkowska,⁴ Hee-Je Kim,⁵ Pavel Zak,⁶ Po-Nan Wang,⁷ Tsvetomir Mitov,⁸ James Hanyok,⁹ Li Liu,⁹ Aziz Benzohra,⁹ Arnaud Lesegretain,⁹ Jorge Cortes,¹⁰ Alexander Perl,¹¹ Mikkael Sekeres,¹² Hervé Dombret,¹³ Sergio Amadori,¹⁴ Jianxiang Wang,¹⁵ Mark Levis,¹⁶ Richard F. Schlenk¹⁷

¹Duke Cancer Institute, Durham, NC, USA; ²La Fe University and Polytechnic Hospital, Valencia, Spain; ³University Hospital Centre Zagreb, Zagreb, Croatia; ⁴Institute of Hematology and Blood Transfusion, Warsaw, Poland; ⁵Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; ⁶University Hospital Hradec Kralove, Hradec Kralove, Czechia; ¬Chang Gung Medical Foundation, Linkou, Taiwan; ⁶Daiichi Sankyo UK Ltd, Uxbridge, United Kingdom; ⁶Daiichi Sankyo, Inc, Basking Ridge, NJ, USA; ¹⁰Augusta University Medical Center, Augusta, GA, USA; ¹¹University of Pennsylvania, Philadelphia, PA, USA; ¹²Sylvester Cancer Center, University of Miami Health System, Miami, FL, USA; ¹³Saint Louis Hospital, University of Paris, Paris, France; ¹⁴Tor Vergata Polyclinic Hospital Rome, Rome, Italy; ¹⁵Institute of Hematology and Blood Diseases Hospital, Tianjin, China; ¹⁶Johns Hopkins University, Baltimore, MD, USA; ¹¬Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany

QuANTUM-First Phase 3 Trial (NCT02668653): Quizartinib Plus Standard Induction Chemotherapy and Consolidation Followed by Single-Agent Quizartinib

AML, acute myeloid leukemia; CR, complete remission; CRc, composite complete remission; DoCR, duration of complete remission; EFS, event-free survival; EU, Europe; HiDAC, high-dose cytarabine; NA, North America, OS, overall survival; RFS, relapse-free survival; WBC, white blood cell.

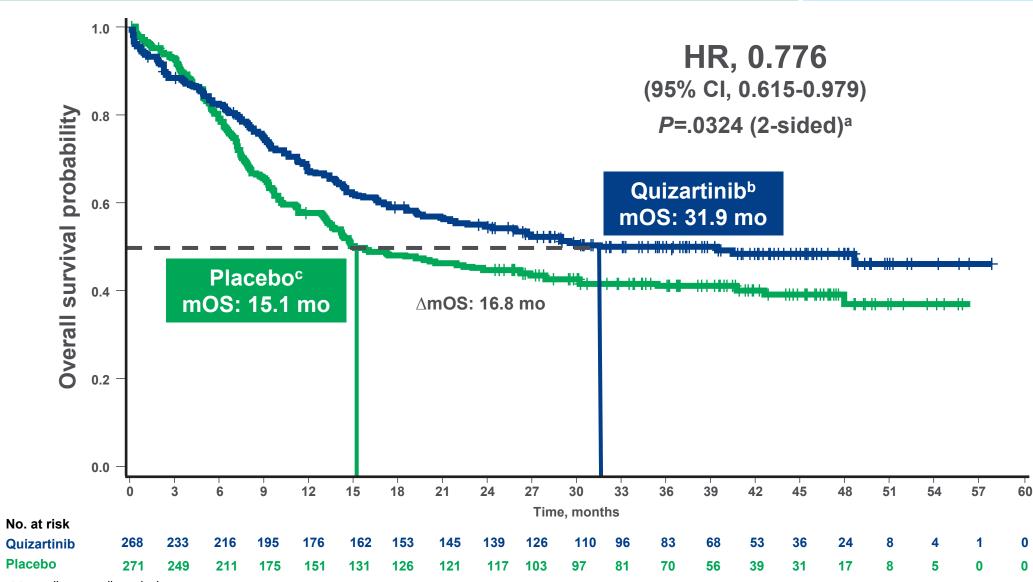
^a WBC count was measured at the time of AML diagnosis.

Baseline Patient Characteristics

Patient Characteristics	Quizartinib (N=268)ª	Placebo (N=271) ^a
Age, years Median (range) ≥60 years, %	56 (23-75) 39.9	56 (20-75) 40.2
Sex, n % Male Female	46.3 53.7	44.6 55.4
Race, % Asian Black or African American American Indian or Alaska Native White Other	29.9 0.7 0 59.3 10.1	28.8 1.8 0.4 60.1 8.9
Region, % North America Europe Asia/other regions	6.0 60.8 33.2	6.6 60.1 33.2

ITT. intention to treat.

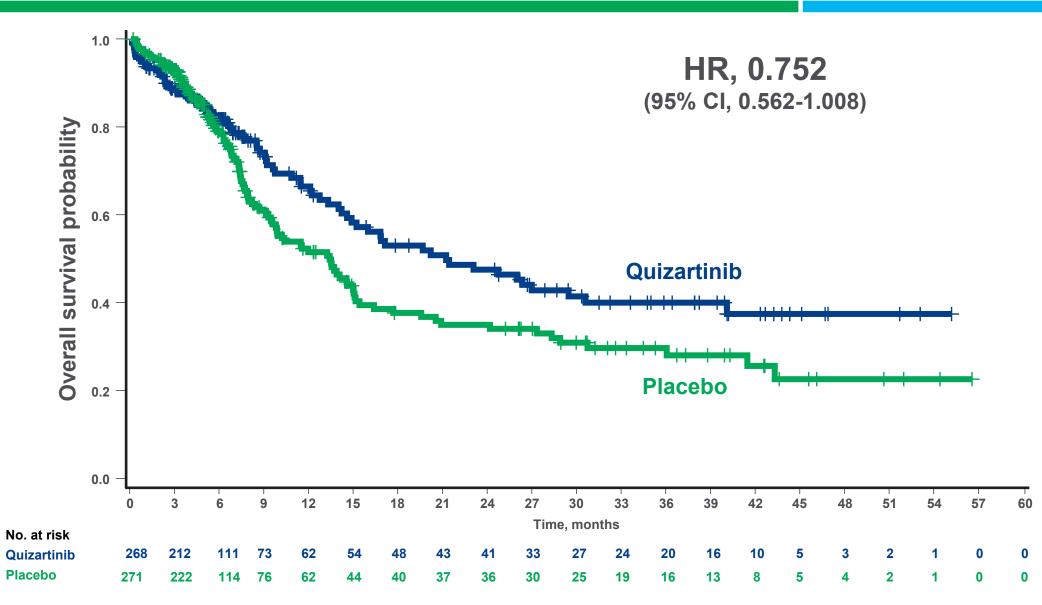
^a Three patients in the ITT set were randomized but not treated.


Baseline Disease Characteristics

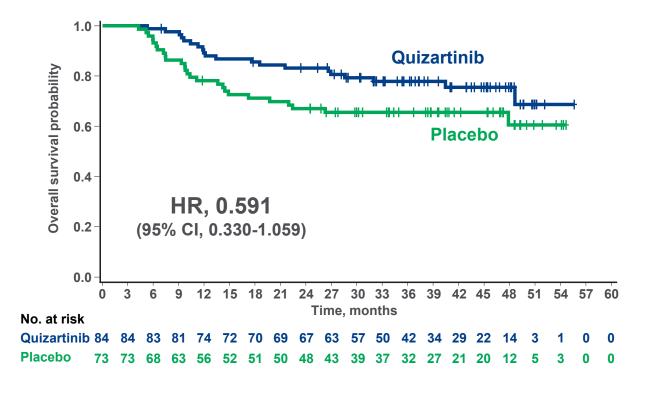
Disease Characteristics	Quizartinib (N=268) ^a	Placebo (N=271) ^a
ECOG performance status, %b		
0	32.5	36.2
1	50.0	50.2
2	17.5	13.3
Cytogenetic risks, %		
Favorable	5.2	7.0
Intermediate	73.5	71.2
Unfavorable	7.1	10.0
Unknown	14.2	11.4
Missing	0	0.4
Mutated NPM1	53.0	51.7
FLT3-ITD/total FLT3, %c,d		
≥3% to ≤25%	35.1	36.2
>25% to ≤50%	53.4	50.9
>50%	11.2	12.9
WBC count at diagnosis of AML, %		
<40×10 ⁹ /L	50.4	50.6
≥40×10 ⁹ /L	49.6	49.4

AML, acute myeloid leukemia; ECOG, Eastern Cooperative Oncology Group; FLT3, fms related receptor tyrosine kinase 3; ITD, internal tandem duplication; NPM1, nucleophosmin; WBC, white blood cell.

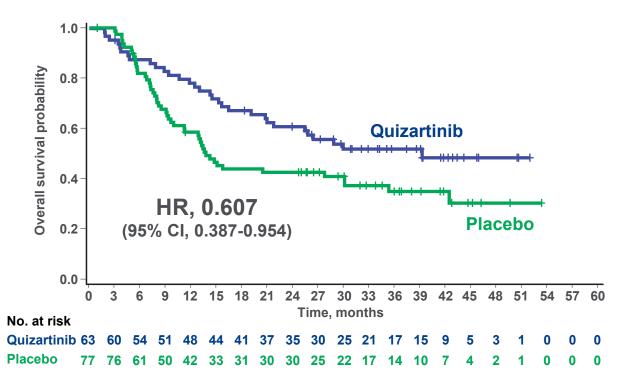
a Three patients in the ITT set were randomized but not treated in each arm. b One patient in the placebo group was missing an ECOG status. Variant allele frequency was assessed by central lab testing. d One patient with unknown FLT3-ITD/total FLT3 was positive per local laboratory testing.


Primary Endpoint: Overall Survival

HR, hazard ratio; mOS, median overall survival.


^a P value was calculated using a stratified log-rank test. ^b Median follow-up time for quizartinib arm, 39.2 months. ^c Median follow-up time for placebo arm, 39.2 months.

Sensitivity Analysis: OS Censored for Allo-HCT

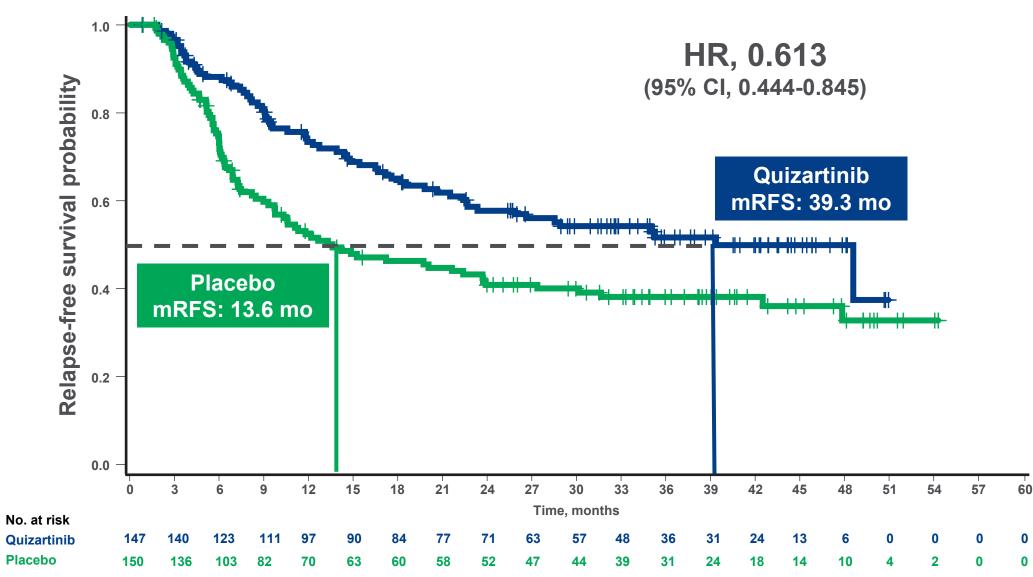


Post-hoc Analysis: OS in Patients Who Achieved CRa

OS – Patients With CR Who Received Allo-HCT in CR1

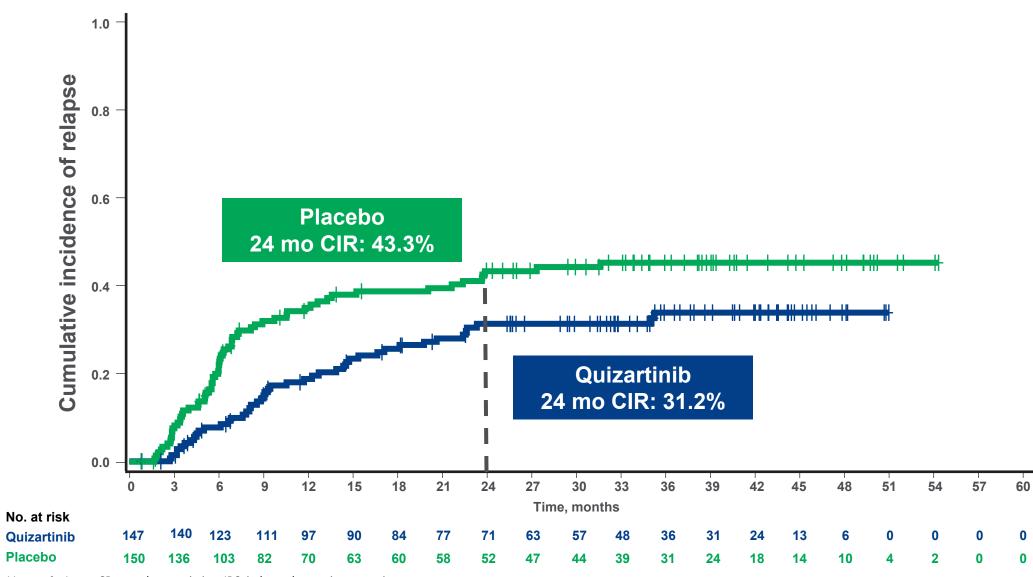
OS – Patients With CR NOT Receiving Allo-HCT in CR1

Subgroup analysis for descriptive purposes only


Response and Duration of CRa

Parameter	Quizartinib (N=268)	Placebo (N=271)
CRc % 95% CI	71.6 (65.8-77.0)	64.9 (58.9-70.6)
CR % 95% CI	54.9 (48.7-60.9)	55.4 (49.2-61.4)
CRi % 95% CI	16.8 (12.5-21.8)	9.6 (6.4-13.7)
Duration of CR Median, months 95% CI	38.6 (21.9-NE)	12.4 (8.8-22.7)

CR, complete remission; CRc, composite complete remission; CRi, complete remission with incomplete neutrophil or platelet recovery; IRC, independent review committee; NE, not evaluable.


a By end of induction by IRC.

Exploratory Endpoint: Relapse-Free Survival in CR Patients

CR, complete remission; HR, hazard ratio; IRC, independent review committee; mRFS, median relapse-free survival. ^a By end of induction by IRC.

Post-Hoc Analysis: Cumulative Incidence of Relapse in CR Patients

CIR, cumulative incidence of relapse; CR, complete remission; IRC, independent review committee.

a By end of induction by IRC.

Summary of Treatment Emergent Adverse Events (TEAEs)

Patients, %	Quizartinib (N=265) ^a	Placebo (N=268) ^a
Overview of adverse events		
TEAEs	99.6	98.9
Grade ≥3 TEAEs	92.1	89.6
TEAEs associated with fatal outcome	11.3	9.7
SAEs	54.0	45.9
Dose modifications ^b		
TEAEs associated with discontinuation	20.4	8.6
TEAEs associated with dose interruption	34.0	20.1
TEAEs associated with dose reduction	18.9	6.3
Summary of death		
Deaths within 30 days of study drug initiation	5.7	3.4
Deaths within 60 days of study drug initiation	7.5	4.9

[•] Median treatment duration: 10.7 weeks for quizartinib and 9.5 weeks for placebo

Overall treatment exposure: 208 total patient-years for quizartinib and 174 total patient-years for placebo SAE, Serious Adverse Event; TEAE, Treatment Emergent Adverse Event.

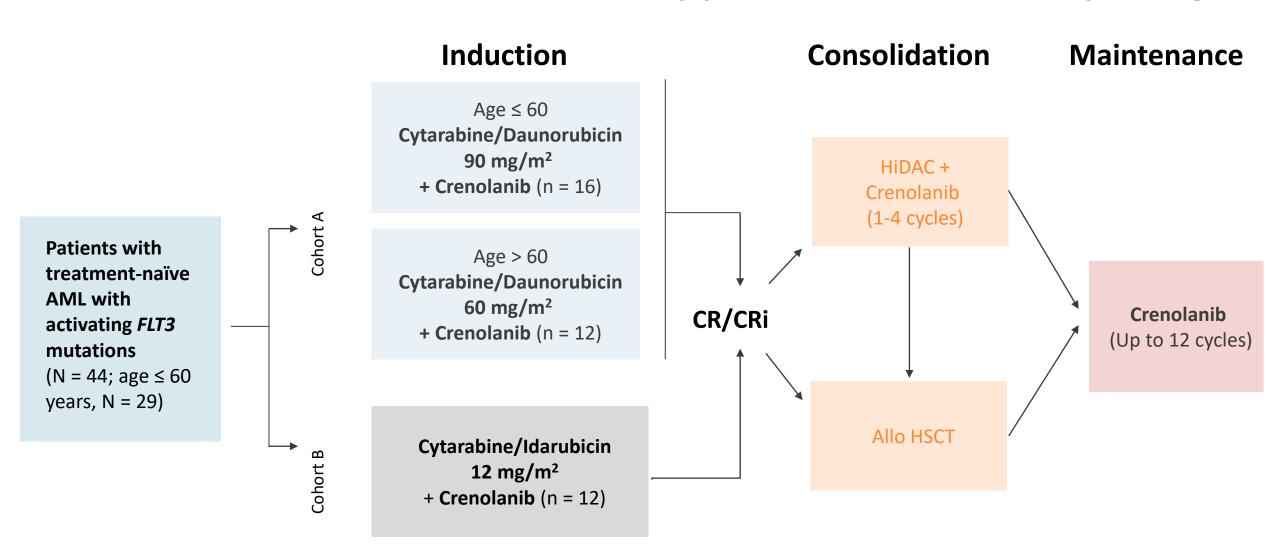
^a Three patients in each group were not treated and not included in the safety analysis. ^b Patients may have been included in >1 category.

Summary of TEAEs Occurring in ≥20% of Patients

TEAEs, %	Quizartini	b (N=265) ^a	Placebo	(N=268) ^a
Hematologic adverse events	All Grades	Grade ≥3	All Grades	Grade ≥3
Febrile neutropenia	44.2	43.4	42.2	41.0
Neutropenia	20.4	18.1	10.1	8.6
Non-hematologic adverse events	All Grades	Grade ≥3	All Grades	Grade ≥3
Pyrexia	42.3	4.5	40.7	4.9
Diarrhea	37.0	3.8	35.1	3.7
Hypokalemia	35.1	18.9	35.8	16.4
Nausea	34.0	1.5	31.3	1.9
Headache	27.5	0	19.8	0.7
Rash	26.0	3.0	24.6	1.1
Vomiting	24.5	0	19.8	1.5
Stomatitis	21.5	4.5	20.9	3.0
Constipation	21.1	0.4	25.7	0

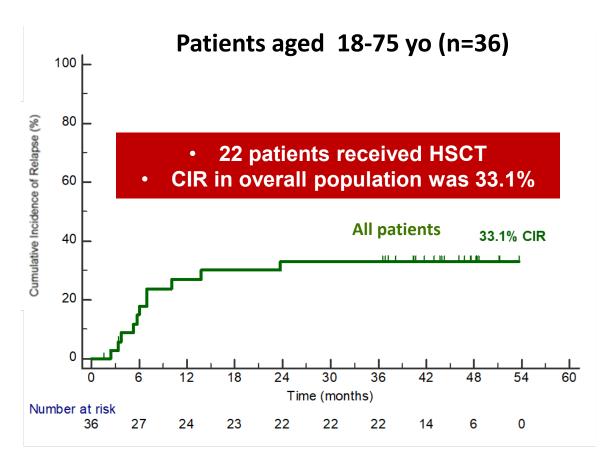
TEAE, Treatment Emergent Adverse Event.

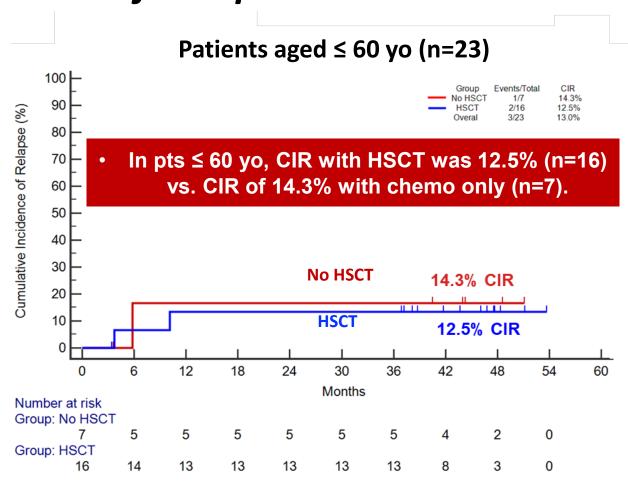
^aThree patients in each group were not treated and not included in the safety analysis.


QT Prolongation by Central ECG and Select Cardiac Events by TEAE

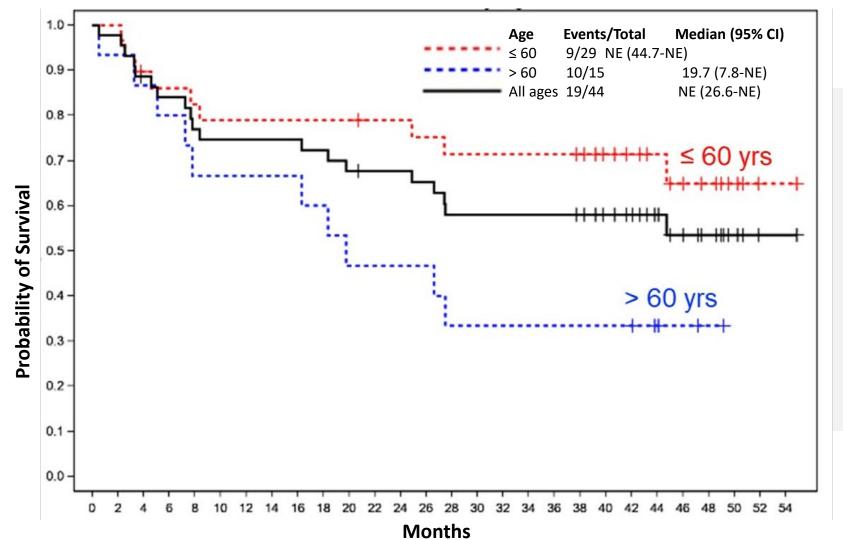
Parameter	Quizartinib (N=265)	Placebo (N=268)			
QTcF interval based on central ECG data (ms), %					
New > 450 ms	34.3	17.9			
New > 480 ms	7.5	2.2			
New > 500 ms	2.3	0.7			
QTcF increase from baseline > 30 ms	55.1	32.5			
QTcF increase from baseline > 60 ms	10.1	4.9			
Select cardiac events by TEAE (PT), %					
ECG QT prolonged	13.6	4.1			
Cardiac arrest/ventricular fibrillation	0.8	0			
Ventricular tachycardia	0.4	0.4			

- Two patients (0.8%) treated with quizartinib had cardiac arrest (grade 4 [n=1], grade 5 [n=1]), with recorded ventricular fibrillation in the setting of severe hypokalemia
- One patient (0.4%) died in their sleep (PT 'death') in the quizartinib arm
- Two patients (0.8%) discontinued quizartinib due to QT prolongation

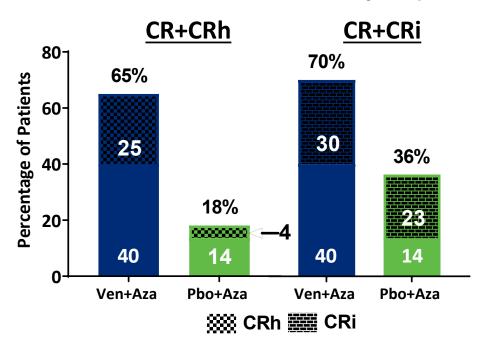

Crenolanib + Intensive Chemotherapy in FLT3m AML: Study Design



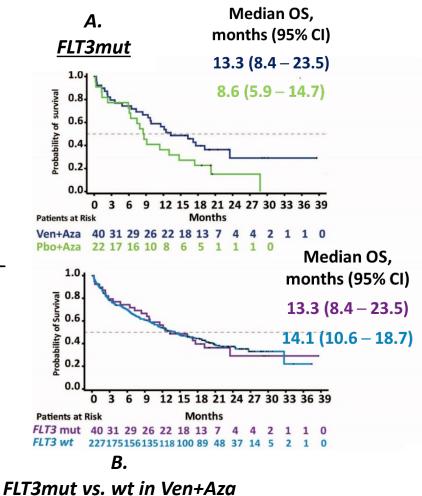
Wang ES, et al. *J Clin Oncol*. 2022;40(16 Suppl): Abstract 7007.

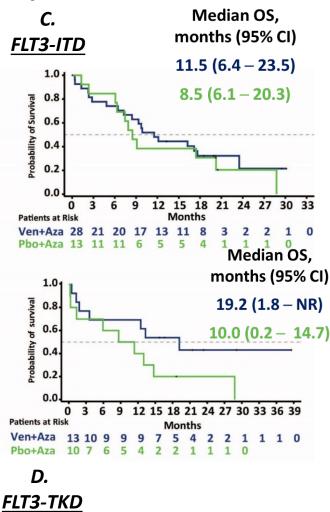

Crenolanib + Intensive Chemotherapy in *FLT3*m AML: *Cumulative Incidence of Relapse*

Crenolanib + Intensive Chemotherapy in FLT3m AML: Overall Survival by Age


- At 45-mo follow-up, median OS not reached; 56.8% of patients alive
- Estimated 3-year OS 71%

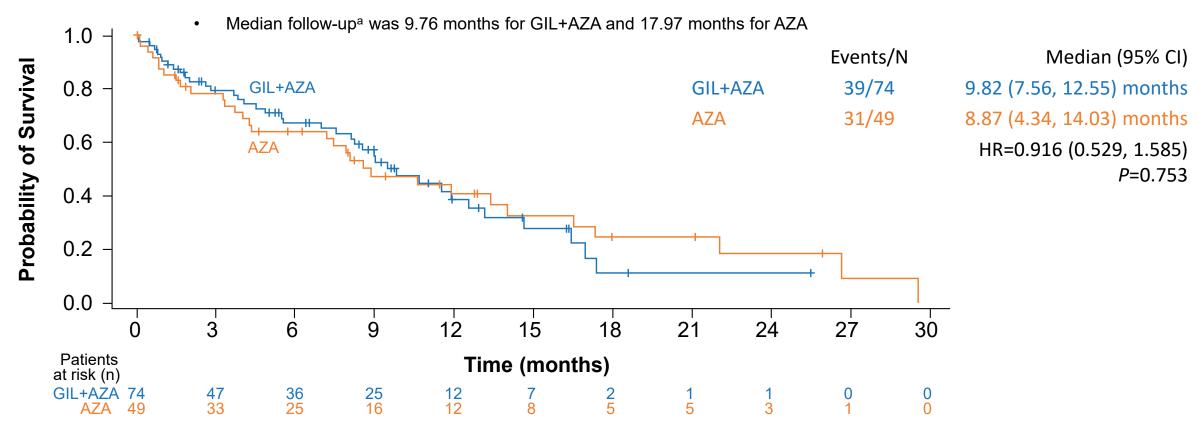
Wang ES, et al. J Clin Oncol. 2022;40(16 Suppl): Abstract 7007.


VIALE A: Response and Survival in FLT3m+ AML



40 FLT3m+ pts (28 ITD) in AZA/VEN, 22 (13 ITD) in AZA/PBO

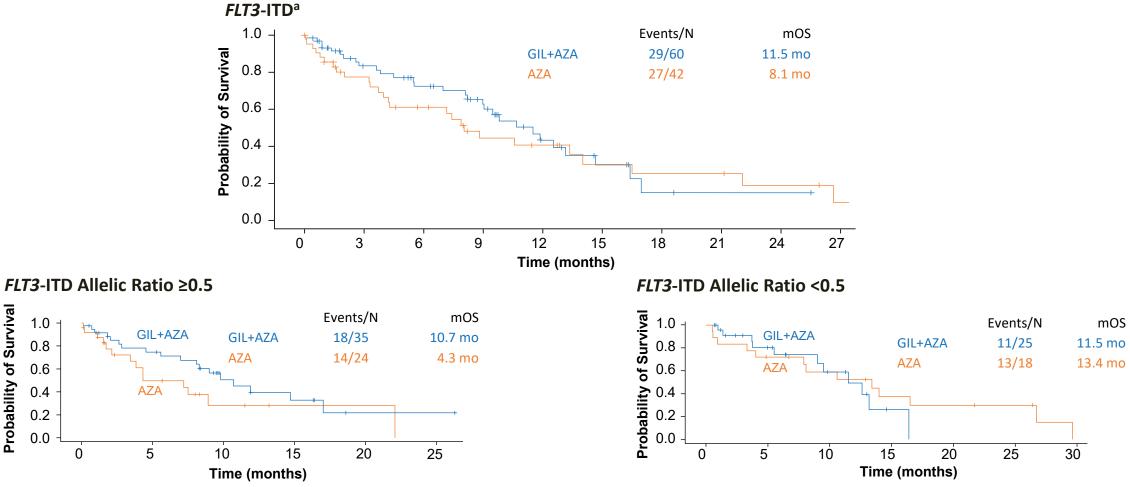
Median treatment duration of 7 mo median time to CR/CRh of 1 m (0.8-4.8 mo) Median DOR of CRh 18.3 mo (17.4 in ITD) Median OS 13.3 mo/11.5 ITD



VIALE-A: In all patients (not just FLT3) with composite complete remission, MRD neg occurred in 23.4% (95% CI, 18.6 to 28.8)

MRD assessed by flow cytometry, with negativity defined according to ELN guidelines

Phase III Study of GLIT/AZA vs AZA in FLT3m AML LACEWING: Overall Survival


The intention-to-treat population included all randomized patients.

^aBased on reverse Kaplan-Meier estimates.

Abbreviations: AZA, azacitidine; CI, confidence interval; GIL+AZA, gilteritinib plus azacitidine; HR, hazard ratio.

LACEWING: Overall Survival by Baseline FLT3 ITD AR

alnoludes patients ITD alone and ITD with TKD mutations.

Abbreviations: AZA, azacitidine; CI, confidence interval; FLT3, FMS-like tyrosine kinase 3; GIL+AZA, gilteritinib plus azacitidine; HR, hazard ratio; ITD, internal tandem duplication; mOS, median overall survival; TKD, tyrosine kinase domain.

QuANTUM-First: Conclusions

- In the pivotal phase 3 QuANTUM-First trial, quizartinib improved OS when combined with standard induction and consolidation therapy and continued for up to 3 years as a single agent in patients ages 18-75 with newly diagnosed FLT3-ITD+ AML
 - Clinically meaningful improvements in RFS, reduced CIR, and longer duration of CR may underpin the OS benefit
- Safety of quizartinib combined with intensive chemotherapy and as continuation monotherapy was generally manageable, with no new safety signals
- These data have the potential to change the standard of care for the treatment of adult patients with newly diagnosed FLT3-ITD+ AML

Q&A