

### Michael Pishvaian, MD, PhD

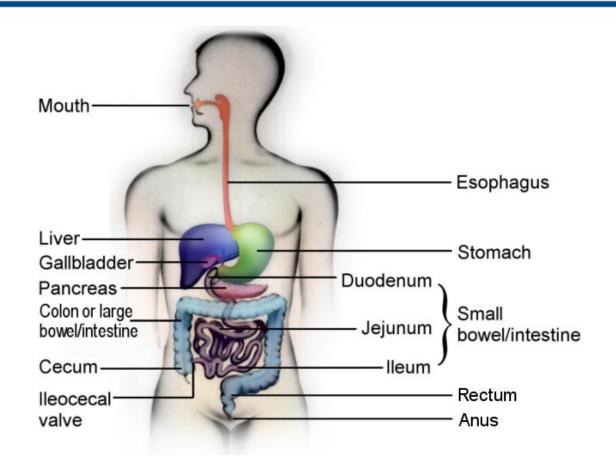
Mike Pishvaian is an Associate Professor in the Department of Oncology at Johns Hopkins University. Dr. Pishvaian is an MD and has a PhD in Tumor Biology, having earned both degrees at Georgetown in 2001. He remained at Georgetown after graduation, completing his medical residency in 2004, then his fellowship in Hematology/Oncology in 2007. He served on the faculty at Georgetown until moving to MD Anderson in 2019. At MD Anderson, he was the co-director for Clinical Research at the Zayed Center for Pancreatic Cancer Research. He then moved to Johns Hopkins, and is the Director of the Gastrointestinal, Developmental Therapeutics, and Clinical Research Programs at the National Capital Region Cancer Center. On social media, Dr. Pishvaian is also the Founder of Tumor Board Tuesdays, a case-based weekly discussion on Twitter focusing on interesting biomarker-based therapies.

Dr. Pishvaian is a translational oncologist, focused on providing novel therapies for patients, particularly in the areas of pancreatic cancer and refractory colorectal cancer. His work has been focused in the area of precision medicine, with a special focus on therapy targeted towards homologous recombination DNA repair deficient tumors, and Dr. Pishvaian is a Co-investigator on an NIH RO1 to study mechanisms of resistance to PARP inhibitor-based therapy, and a Co-PI of a U01 grant aimed at studying ex vivo patient derived models of cancer for patients with pancreatic cancer. Dr. Pishvaian also serves as the Alliance Co-Chair of the Pancreatic Cancer subcommittee, and the chair of TARGET-Panc, an ACCRU-supported effort to build biomarker-based clinical trials in Pancreatic Cancer.



# Most Important Practice-Changing Advances in GI Cancers in 2023

Michael Pishvaian, MD, PhD
Associate Professor, Department of Oncology
Director of the Gastrointestinal, Developmental Therapeutics, and Clinical Research
Programs at the NCR Kimmel Cancer Center at Sibley Memorial Hospital
Johns Hopkins University School of Medicine


## Disclosures (3 years)



- Consultant/Advisory Board/Steering Committee:
  - AstraZeneca, Merck, Pfizer, Novartis, Ideaya, Astellas, Trisalus, Pionyr, Seattle Genetics, Merus
- Travel, accommodations and expenses support:
  - Astellas, RenovoRx
- Stock/Ownership:
  - Perthera, Tumor Board Tuesdays, TRICC
- Research funding to my institution:
  - Seattle Genetics, Tesaro, Arcus Bio, Ideaya, Repare Tx, Novartis, Pfizer, Merck, Tizonia, Takeda, RenovoRx, Biomed Valley Discoveries, Boerhinger Ingelheim, Astellas, Hutchinson Medipharma
- Research funding for CME:
  - AstraZeneca, Exelixis, Caris, Incyte, Ipsen, Natera, Bayer, BMS, Eisai, Foundation Medicine, Pfizer,
     SeaGen, Taiho, Tempus, Merck, Novartis

## Overview - Moving Down the GI Tract Johns HOPKINS

- Updates in upper GI cancers
- Updates in pancreatic cancer
- Updates in biliary cancer
- Updates in colorectal cancer





# **Updates in Gastroesophageal Cancer**

G = Gastric

GEJ = Gastroesophageal Cancer

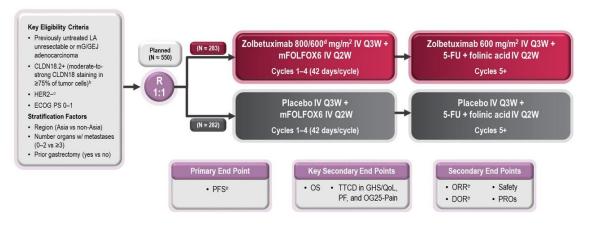
E = Esophageal

### Claudin 18.2 – SPOTLIGHT Trial



exposure of Claudin 18.2 M

 Claudin 18.2 is a tight junction protein normally expressed in gastric mucosal cells, and is retained in G/GEJ cancer cells


But, in cancer cells, tight junctions are disrupted and Claudin 18.2 becomes

exposed on the surface of the G/GEJ cancer cells

Zolebetuximab in an anti-Claudin 18.2 mAb

### Study Design: SPOTLIGHT

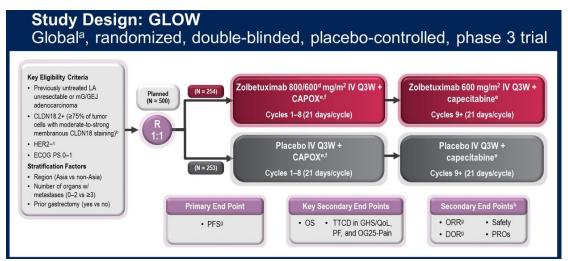
Globala, randomized, double-blinded, placebo-controlled, phase 3 trial



2244 patients screened; 38.5% were Claudin 18.2+

Primary End Point: PFS by Independent Review Committee<sup>a</sup>

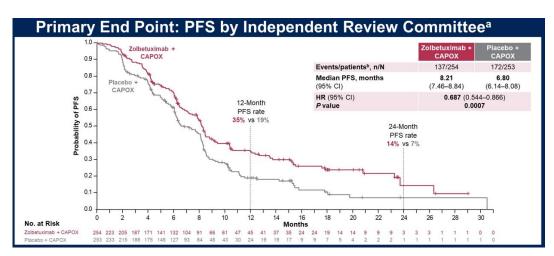


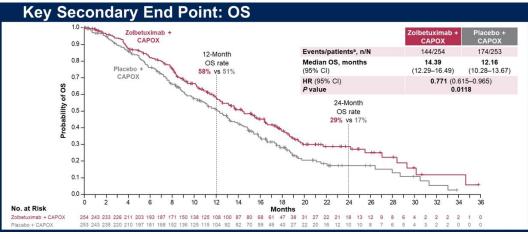

|            | Zolbe | Placebo |
|------------|-------|---------|
| ORR (%)    | 60.7  | 62.1    |
| mPFS (mos) | 10.61 | 8.67    |
| mOS (mos)  | 18.23 | 15.54   |

10% MORE Gr3/4 N/V On target AE

### Claudin 18.2 – GLOW Trial




GLOW was a Phase 3 trial of CAPOX +/- Zolbetuximab




2333 patients screened; 38.4% were Claudin 18.2+

|            | Zolbe | Placebo |
|------------|-------|---------|
| ORR (%)    | 53.8  | 48.8    |
| mPFS (mos) | 8.21  | 6.80    |
| mOS (mos)  | 14.39 | 12.16   |

Many, many other Claudin 18.2 targeted therapies in development





## Adjuvant Nivolumab After Gastric



 In 2021, Dr. Janjigian, et al showed that the addition of nivolumab to chemotherapy in metastatic G/GEJ cancer improved mOS

**Cancer Resection** 

- In 2021, Dr. Kelly, et al showed that the addition of nivolumab post-operatively in patients with E/GEJ cancers with positive residual disease (i.e. a non-CR) after chemoXRT improved OS
- But what about post-operative therapy for GASTRIC cancer?



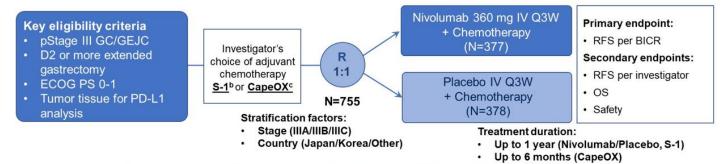
ATTRACTION-5: A Phase 3 study of nivolumab plus chemotherapy as postoperative adjuvant treatment for pathological stage III gastric or gastroesophageal junction cancer

Masanori Terashima<sup>1</sup>, Yoon-Koo Kang<sup>2</sup>, Young-Woo Kim<sup>3</sup>, Narikazu Boku<sup>4</sup>, Hyun Cheol Chung<sup>5</sup>, Jen-Shi Chen<sup>6</sup>, Jiafu Ji<sup>7</sup>, Ta-Sen Yeh<sup>8</sup>, Li-Tzong Chen<sup>9</sup>, Min-Hee Ryu<sup>2</sup>, Jong Gwang Kim<sup>10</sup>, Takeshi Omori<sup>11</sup>, Sun-Young Rha<sup>5</sup>, Tae Yong Kim<sup>12</sup>, Keun Won Ryu<sup>3</sup>, Shinichi Sakuramoto<sup>13</sup>, Yasunori Nishida<sup>14</sup>, Norimasa Fukushima<sup>15</sup>, Takanobu Yamada<sup>16</sup>, Mitsuru Sasako<sup>17</sup>

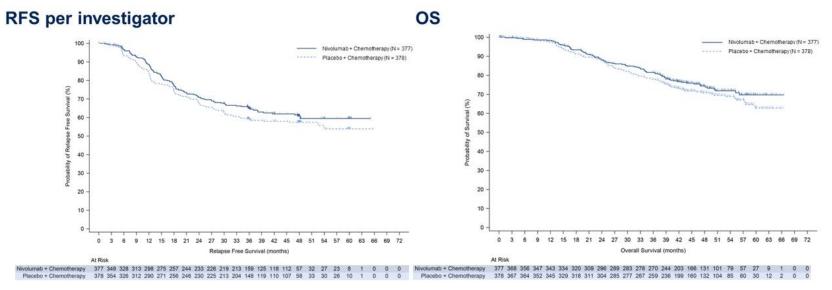
Shizuoka Cancer Center, Japan; "Asam Medical Center, Republic of Korea; "National Cancer Center, Republic of Korea; "The Institute of Medical Science, The University of Tokyo, Japan; "Yonsei Cancer Center, Yonsei University Health System, Republic of Korea; "Unitou Chang Gung Memorial Hospital, Taiwan; "Beijing Cancer Hospital, China; "Chang Gung Memorial Hospital, Taiwan; "Kaohisiung Medical University Hospital, Taiwan; "Kyunggook National University Chilgok Hospital, Republic of Korea; "Osaka International Cancer Institute, Japan; "Seoul National University Hospital, Republic of Korea; "Osaka International Cancer Institute, Japan; "Seoul National University Hospital, Republic of Korea; "Osaka International Cancer Institute, Japan; "Seal National University Hospital, Republic of Korea; "Osaka International Properties of National University Hospital, Republic of Korea; "Sealaman Medical University International Medical Center, Japan; "Kejukai Sapporo Hospital, Japan; "Yamagata Prefectural Central Hospital, Japan; "Kanagawa Cancer Center, Japan; "Yamagata Prefectural Central Hospital, Japan; "Kanagawa Cancer Center, Japan; "Yamagata Prefectural Central Hospital, Japan; "Kanagawa Cancer Center, Japan; "Yamagata Prefectural Central Hospital, Japan; "Kanagawa Cancer Center, Japan; "Yamagata Prefectural Central Hospital, Jap






PRESENTED BY: Masanori Terashima, ATTRACTION-5 Study




# Adjuvant Nivolumab After Gastric Cancer Resection



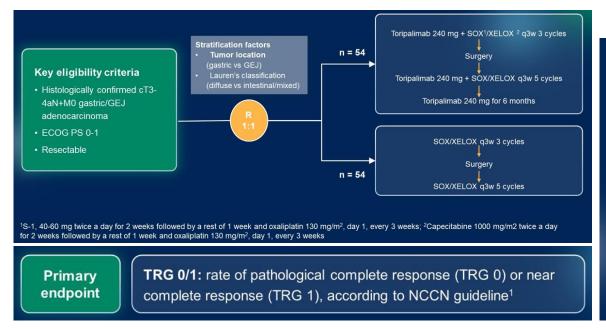
Phase 3, double-blind, placebo-controlled study of Asian patients (Japan, Korea, Taiwan, China)<sup>a</sup>



• Planned sample size: 700 patients (assuming HR=0.67; 3-year RFS, 71% vs 60%)



|            | Nivo | Placebo |
|------------|------|---------|
| mRFS (mos) | NE   | NE      |
| 3y RFS (%) | 68.4 | 65.3    |
| mOS (mos)  | NR   | NR      |
| 3y OS (%)  | 81.5 | 78.0    |


- No improvement in RFS or OS
- So currently there is no role for adjuvant nivo for resected gastric cancer

Terashima M, et al, ASCO 2023, Abstract 4000

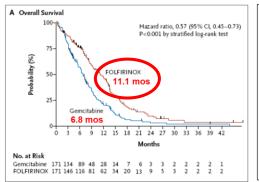
## Perioperative Chemo +/- Toripalimab (a) JOHNS HOPKINS for Operable G/GEJ Cancer



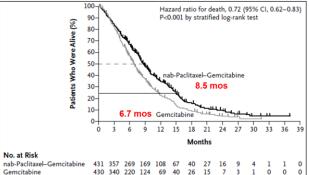
- Is there any role for neodjuvant/peri-operative anti-PD1 therapy for resectable G/GEJ cancer?
- Yuan, et al assess the addition of toripalimab to peri-operative SOX/XELOX
  - There was an improvement in pathological response (tumor regression grade, TRG)
- But, will that translated to any survival benefit?



|                  | Toripalimab +<br>chemotherapy (n = 54) | Chemotherapy<br>(n = 54) | P value |
|------------------|----------------------------------------|--------------------------|---------|
| TRG              |                                        |                          |         |
| TRG 0 (ypT0N0M0) | 12 (22%)                               | 4 (7%)                   | 0.03    |
| TRG 1            | 12 (22%)                               | 7 (13%)                  |         |
| TRG 2            | 16 (30%)                               | 29 (54%)                 |         |
| TRG 3            | 11 (20%)                               | 12 (22%)                 |         |
| Combined TRG 0-1 | 24 (44%)                               | 11 (20%)                 | 0.01    |
| No surgery       | 3 (6%)                                 | 2 (4%)                   |         |

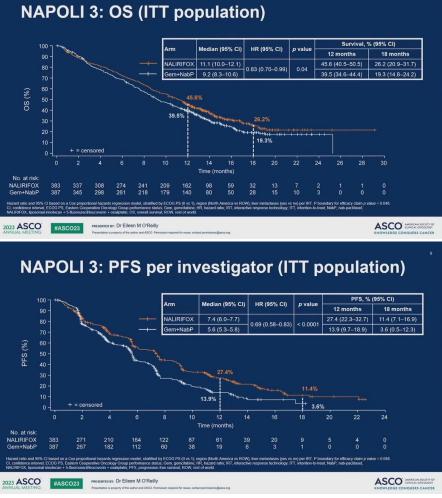



## **Updates in Pancreatic Cancer**


### **NALIRIFOX**



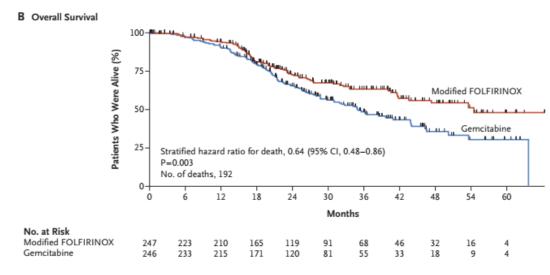
- FOLFIRINOX and Gemcitabine + Nab-paclitaxel have been our SOC regimens for mPDAC for 10+ years
- There has never been a head to head comparison of these two regimens
  - FOLFIRINOX vs. Gemcitabine, Phase III
  - Response rate: 32% vs. 9%
  - Overall survival: 11.1 vs. 6.8 months




- Gem-nab-pac vs. Gemcitabine, Phase III
- Response rate: 23% vs. 7%
- Overall survival: 8.5 vs. 6.7 months



- NAPOLI-3 was a Phase 3 trial comparing NALIRIFOX to gem-nab-pac
  - Improved PFS and OS with NALIRIFOX
  - More GI tox with NALIRIFOX
  - More heme tox with gem-nab-pac


|            | NFOX   | Gnab |
|------------|--------|------|
| ORR (%)    | 41.8   | 36.2 |
| mOS (mos)  | (11.1) | 9.2  |
| mPFS (mos) | 7.4    | 5.6  |



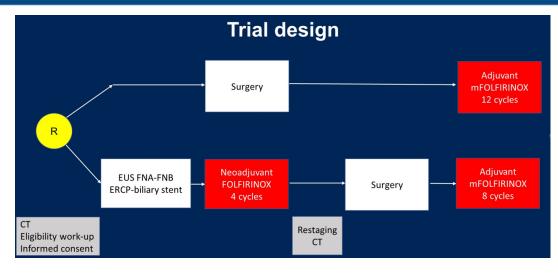
### Perioperative Therapy for PDAC

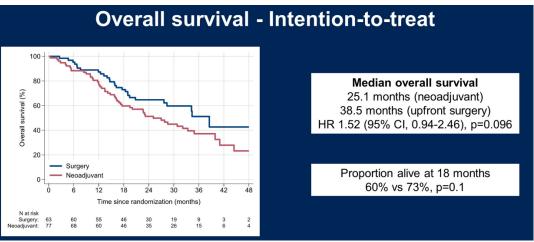


- Adjuvant FOLFIRINOX for patients with resected pancreatic cancer has unequivocally shown improved survival compared to gemcitabine
  - mOS improved from 40 months → 54.5 months\*
- Trials such as PREOPANC-1 have shown that neoadjuvant chemoradiotherapy improves survival over immediate surgery for resectable pancreatic cancer
  - mOS 13.7 months → 17.1 months\*
  - \*(These two trials have very different starting points)
- So it is perfectly reasonable to hypothesize that neoadjuvant/perioperative FOLFIRINOX would improve OS compared to immediate surgery



| Outcome                                           | Preoperative<br>Radiochemotherapy<br>(n = 119) | Immediate<br>Surgery<br>(n = 127) | HR   | <i>P</i><br>Value |
|---------------------------------------------------|------------------------------------------------|-----------------------------------|------|-------------------|
| Median OS, mos (ITT population)*                  | 17.1                                           | 13.7                              | 0.74 | .074              |
| ■ Subset with R0/R1 resection <sup>†</sup>        | 42.1                                           | 16.8                              | NR   | < .001            |
| Resection rate, n (%)                             | 72 (60)                                        | 91 (72)                           |      | .065              |
| R0 resection rate, n/N (%)                        | 45/72 (63)                                     | 28/91 (31)                        |      | < .001            |
| Median DFS, mos                                   | 9.9                                            | 7.9                               | 0.71 | .023              |
| Median distant metastases-free interval, mos      | 18.4                                           | 10.6                              | 0.71 | .013              |
| Median locoregional recurrence-free interval, mos | Not reached                                    | 11.8                              | 0.55 | .002              |
| Serious AEs, n (%)                                | 55 (46)                                        | 49 (39)                           |      | .28               |

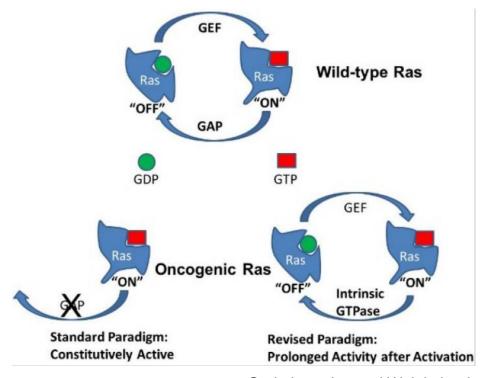

Preliminary analysis; only 149/176 events. †Preoperative radiochemotherapy, n = 72; immediate surgery, n = 9;

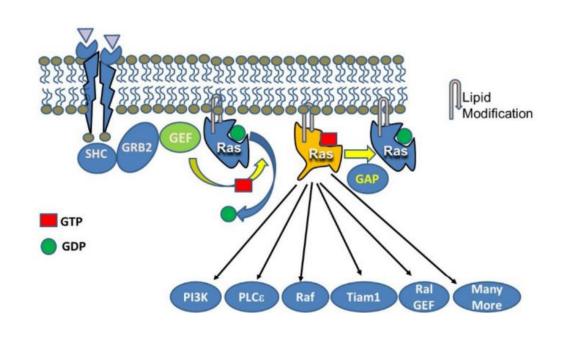

### **Perioperative Therapy for PDAC**



- Labori KJ, et al presented the NORPACT-1 trial of perioperative FOLFIRINOX vs. upfront surgery for resectable pancreatic cancer
  - Operable PDAC head cancers per NCCN guidelines no arterial involvement
  - Study designed to detect an *improvement* in OS at 18 months from  $50\% \rightarrow 70\%$
  - ~20% of pre-op chemo patients did not have surgery
- Patients treated with FOLFIRINOX had a worse 18 month OS!
  - Despite a much better R0 resection rate
- This has shaken our certainty but there are two large randomized
   Phase 3 trials accruing that will hopefully answer this question definitively

| Histopathology     |                             |                           |         |  |  |
|--------------------|-----------------------------|---------------------------|---------|--|--|
|                    | Neoadjuvant group<br>(n=63) | Upfront surgery<br>(n=56) | p-value |  |  |
| Intention-to-treat |                             |                           |         |  |  |
| RO                 | 56%                         | 39%                       | 0.076   |  |  |
| NO                 | 29%                         | 14%                       | 0.060   |  |  |
|                    |                             |                           |         |  |  |
| Per-protocol       | (n=46)                      | (n=49)                    |         |  |  |
| RO                 | 59%                         | 33%                       | 0.011   |  |  |
| NO NO              | 37%                         | 10%                       | 0.002   |  |  |

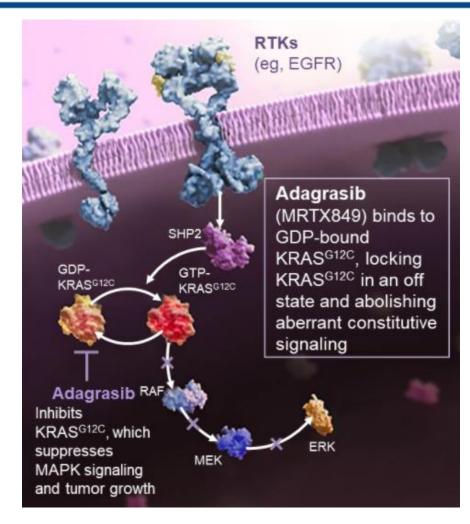



# **KRAS** Mutations in Pancreatic Cancer



- KRAS mutations occur in 90 95% of pancreatic cancers
  - KRAS mutations are a key event in the initiation and development of PDAC

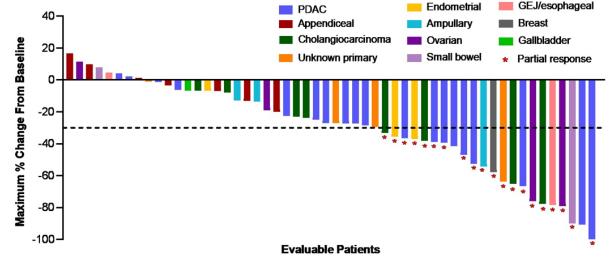




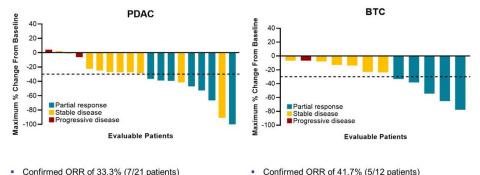

# **KRYSTAL-1: Adagrasib in KRAS**<sup>G12C</sup> **Mutated Pancreatic Cancer**



- *KRAS* mutations occur in 90 95% of PDACs
  - 80% are KRAS<sup>G12D</sup> or KRAS<sup>G12V</sup>
  - 2% are KRAS<sup>G12C</sup>
- KRAS cycles between a GTP-on state and a GDP-off state
  - The protein resynthesis half life is 24 hours
- Adagrasib covalently binds to KRAS<sup>G12C</sup> in its GDP-off state
- Phase II monotherapy in solid tumors
  - Mostly pancreatic cancers (n = 21)
  - Other GI cancers (n = 29; biliary n = 12)
  - All had at least 1 line of Tx




## **KRYSTAL-1: Adagrasib in KRAS**<sup>G12C</sup> **Mutated Pancreatic Cancer**




- Adagrasib demonstrated efficacy
  - ORR was 35.1% overall
  - 33% in pancreatic cancer
  - 42% in biliary cancers

| Tumor Type           | n               | ORR, n (%) | DCR, n (%) |
|----------------------|-----------------|------------|------------|
| All patients         | 57 <sup>b</sup> | 20 (35.1)  | 49 (86.0)  |
| PDAC                 | 21              | 7 (33.3)   | 17 (81.0)  |
| втс                  | 12              | 5 (41.7)   | 11 (91.7)  |
| Other GI tumors      | 12              | 2 (16.7)   | 10 (83.3)  |
| Appendiceal          | 7               | 0 (0.0)    | 6 (85.7)   |
| Small Bowel          | 2               | 1 (50.0)   | 2 (100.0)  |
| GEJ/esophageal       | 3               | 1 (33.3)   | 2 (66.7)   |
| Gynecological tumors | 7               | 4 (57.1)   | 6 (85.7)   |
| Ovarian              | 4               | 2 (50.0)   | 3 (75.0)   |
| Endometrial          | 3               | 2 (66.7)   | 3 (100.0)  |
| Other tumors         | 5               | 2 (40.0)   | 5 (100.0)  |
| Unknown Primary      | 4               | 1 (25.0)   | 4 (100.0)  |
| Breast               | 1               | 1 (100.0)  | 1 (100.0)  |



- Confirmed objective responses were observed in 20/57 patients (35.1%)
- Disease control was observed in 49/57 patients (86.0%)

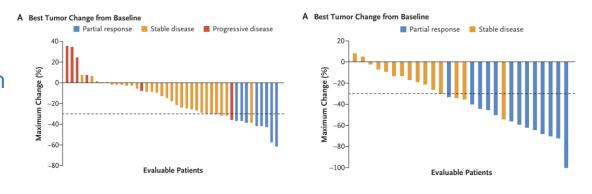


- Confirmed ORR of 33.3% (7/21 patients)

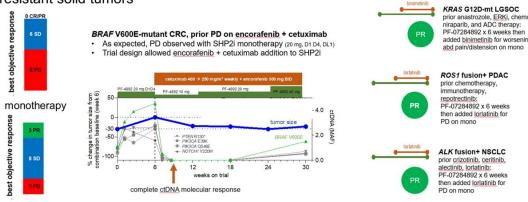
- Disease control was observed in 17/21 (81.0%) patients
   Disease control was observed in 11/12 (91.7%) patients

## **KRYSTAL-1: Adagrasib in KRAS**<sup>G12C</sup> **Mutated Solid Tumors**




- Adagrasib was adequately tolerated
  - No Grade 4 or Grade 5 adverse events
  - Nausea, vomiting, diarrhea in 40 50% of patients
    - But, almost all Grade ≤2
  - 6% Grade 3 fatigue

| TDAE = 1/9/\                      | 0         | verall solid tum | nors (N=63) |           |
|-----------------------------------|-----------|------------------|-------------|-----------|
| TRAEs, n (%)                      | Any Grade | Grade 1          | Grade 2     | Grade 3   |
| Any TRAEs                         | 61 (96.8) | 16 (25.4)        | 28 (44.4)   | 16 (25.4) |
| Most Frequent TRAEs <sup>b</sup>  |           |                  |             |           |
| Nausea                            | 31 (49.2) | 23 (36.5)        | 7 (11.1)    | 1 (1.6)   |
| Diarrhea                          | 30 (47.6) | 21 (33.3)        | 8 (12.7)    | 1 (1.6)   |
| Fatigue                           | 26 (41.3) | 12 (19.0)        | 10 (15.9)   | 4 (6.3)   |
| Vomiting                          | 25 (39.7) | 20 (31.7)        | 4 (6.3)     | 1 (1.6)   |
| Blood creatinine increase         | 10 (15.9) | 7 (11.1)         | 3 (4.8)     | 0 (0.0)   |
| Anemia                            | 9 (14.3)  | 3 (4.8)          | 5 (7.9)     | 1 (1.6)   |
| AST increase                      | 9 (14.3)  | 7 (11.1)         | 0 (0.0)     | 2 (3.2)   |
| Decreased appetite                | 9 (14.3)  | 5 (7.9)          | 4 (6.3)     | 0 (0.0)   |
| Peripheral edema                  | 9 (14.3)  | 7 (11.1)         | 2 (3.2)     | 0 (0.0)   |
| Electrocardiogram QT prolongation | 8 (12.7)  | 3 (4.8)          | 1 (1.6)     | 4 (6.3)   |
| Dysgeusia                         | 7 (11.1)  | 6 (9.5)          | 1 (1.6)     | 0 (0.0)   |

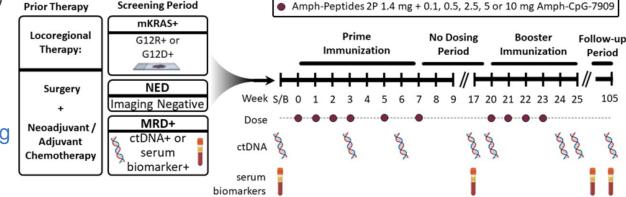

# Targeting RAS/SHP/SOS in Combination



- KRAS inhibitors can be effective
  - But the effect may be short lived
  - Perhaps there will be improved outcomes with combination therapies?
- E.g. Yaeger, et al Adagrasib +/- cetuximab in KRAS<sup>G12C</sup>-mutated CRC
  - ORR = 23% vs. 46%
  - DOR = 4.3 mos vs. 7.6 mos
- Drillon, et al showed activity of a SHP2 inhibitor, but only in combination
  - E.g. PR with a SHP2i + encorafenib + cetux in a BRAF<sup>V600E</sup> mutated CRC patient



A first-in-human, phase 1 study of the SHP2 inhibitor **PF-07284892** as monotherapy and in combination with different targeted therapies in oncogene-driven treatment-resistant solid tumors

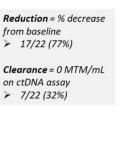


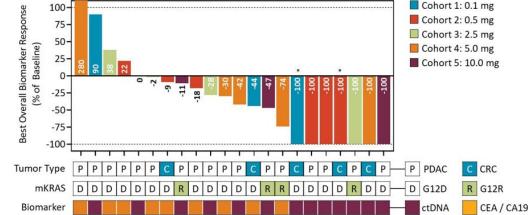

Combination

# ELI-002 Personalized Vaccine in KRAS<sup>G12R/D</sup> cancers (Amplify-201)



- KRAS neoantigens are promising immunotherapy targets
- Target patient population that is radiologically NED, but MRD+ (ctDNA+ or tumor marker+)
  - ELI-002 is a KRAS<sup>G12D/R</sup> and TLR-9 adjuvant targeting cancer vaccine





### 2023 ASCO ANNUAL MEETING

AMPLIFY-201, a first-in-human safety and efficacy trial of adjuvant ELI-002 2P immunotherapy for patients with high-relapse risk G12D- or G12R- mutated pancreatic and colorectal cancer

Eileen M O'Reilly, MD<sup>1</sup>, Zev A Wainberg, MD<sup>2</sup>, Colin D Weekes, MD<sup>3</sup>, Muhammad Furqan, MD<sup>4</sup>, Pashtoon M Kasi, MD<sup>4</sup>, Craig E Devoe, MD<sup>5</sup>, Alexis D Leal, MD<sup>6</sup>, Vincent Chung, MD<sup>7</sup>, James Perry<sup>8</sup>, Lochana Seenappa<sup>8</sup>, Lisa K McNeil, PhD<sup>8</sup>, Esther Welkowsky<sup>8</sup>, Peter C DeMuth, PhD<sup>8</sup>, Christopher M Haqq, MD PhD<sup>8</sup>, Shubham Pant, MD<sup>9</sup>

Memorial Sloan Kettering Cancer Center, New York, NY<sup>1</sup>, University of California, Los Angeles, Los Angeles, CA<sup>2</sup>, Massachusetts General Hospital, Boston, MA<sup>3</sup>, University of Iowa, Iowa City, IA<sup>4</sup>, Northwell Health, Lake Success, NY<sup>5</sup>, University of Caleredo Aurora, CO<sup>6</sup>, City of Hope, Duarte, CA<sup>7</sup>, Elicio Therapeutics, Boston, MA<sup>8</sup>, University of Texas, MD Anderson Cancella Houston, TX<sup>9</sup>









PRESENTED BY: Eileen M. O'Reilly, M.D., Memorial Sloan Kettering Cancer Center, New York, NY

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

## **SEQUENCEing Chemotherapy for Pancreatic Cancer**



### **SEQUENCE trial: Study Design**



Open label, randomized, phase II investigator-initiated trial in 1<sup>st</sup>-line mPDAC patients.

mPDAC ECOG 0-1 (157 patients)

### Primary endpoint:

- Increased efficacy in terms of 12-month OS rate Secondary endpoints:
- ORR, TTP, PFS, mOS; quality of life and safety

ClinicalTrial.gov id. NCT02504333 Accrual: 30 months (July 27, 2017-April 16, 2019) Tumor evaluations every 12 weeks

### nab-P/Gem

nab-paclitaxel 125 mg/m<sup>2</sup> d1,8,15 gemcitabine 1000 mg/m<sup>2</sup> d1,8,15

Every 4 w until PD, unacceptable toxicity or withdrawal of IC

### nab-P/Gem-mFOLFOX

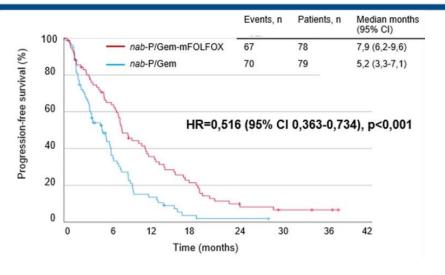
nab-paclitaxel 125 mg/m² d1,8,15 gemcitabine 1000 mg/m² d1,8,15 mFOLFOX-6 d29 oxaliplatin 85 mg/m², d29 LV\* 400 mg/m², d29 5-FU 400 mg/m² bolus, d29 5-FU 2400 mg/m² 46h CI, d29-30

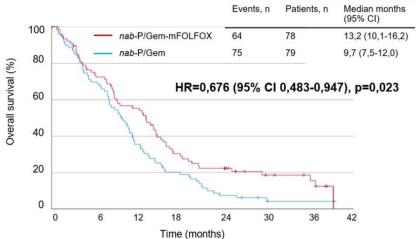
Every 6 w until PD, unacceptable toxicity or withdrawal of IC

(\*) L-leucovorin 200 mg/m² or racemic leucovorin 400 mg/m²






PRESENTED BY:

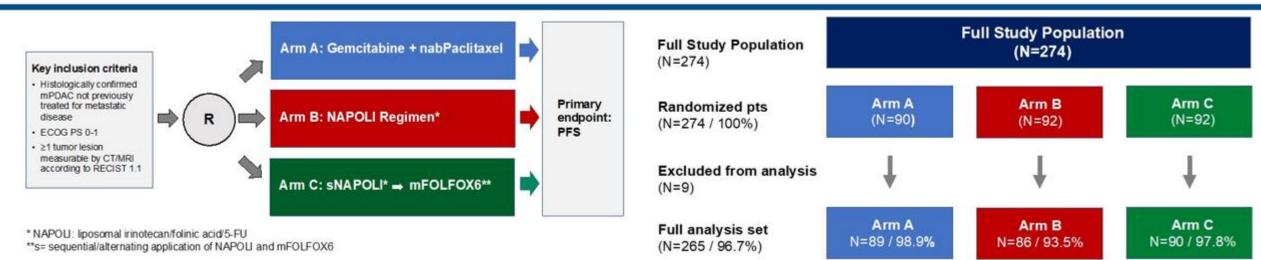

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.



## **SEQUENCEing Chemotherapy for Pancreatic Cancer**








|                         | Gem-Nab-Pac | Gem-Nab-Pac → FOLFOX | P-value |
|-------------------------|-------------|----------------------|---------|
| ORR                     | 20%         | 40%                  | 0.009   |
| mPFS                    | 5.2 months  | 7.9 months           | <0.001  |
| mOS                     | 9.7 months  | 13.2 months          | 0.023   |
| 12m OS                  | 35%         | 55%                  | 0.016   |
| 2 <sup>nd</sup> Line Tx | 55%         | 40%                  | 0.08*   |

Quality of life was measured and was similar in both arms

## A Different Sequencing Trial in Pancreatic Cancer: FOOTPATH

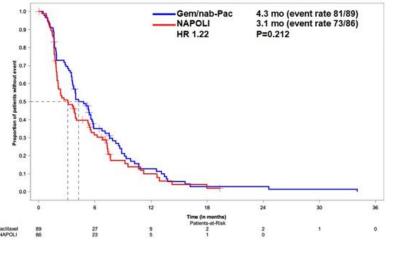


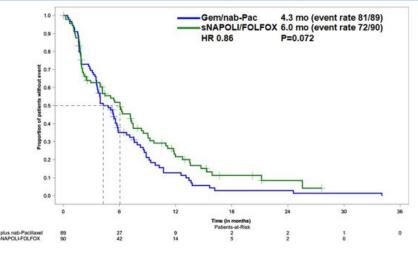


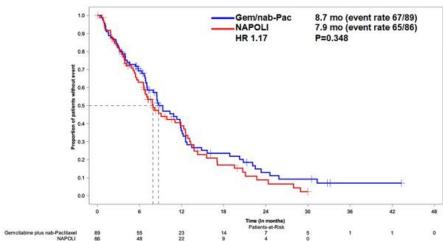
|                          | Arm A (Gem<br>N= 8 |           | Arm B (N.<br>N= 8 |           | Arm C (sNAPO<br>N= |           |
|--------------------------|--------------------|-----------|-------------------|-----------|--------------------|-----------|
| AE/SAE                   | All Grades         | Grade 3-4 | All Grades        | Grade 3-4 | All Grades         | Grade 3-4 |
| Hematologic (in %)       | 66.3               | 39.3      | 29.1              | 11.6      | 32.2               | 18.9      |
| Neutropenia              | 30.3               | 21.3      | 9.3               | 5.8       | 13.3               | 6.7       |
| Febrile Neutropenia      | 1.1                | 1.1       | n/a               | n/a       | 1.1                | 1.1       |
| Anemia                   | 40.4               | 16.9      | 17.4              | 4.7       | 15.6               | 10        |
| Thrombocytopenia         | 30.3               | 11.2      | 2.3               | 2.3       | 5.6                | 2.2       |
| Non-hematologic (in %)   |                    |           |                   |           |                    |           |
| Diarrhea                 | 38.2               | 3.4       | 58.1              | 11.6      | 52.2               | 12.2      |
| Nausea                   | 41.6               | 3.4       | 47.7              | 7.0       | 45.6               | 6.7       |
| Vomiting                 | 21.3               | 1.1       | 27.9              | 4.7       | 28.9               | 4.4       |
| Hypokalemia              | 7.9                | n/a       | 15.1              | 5.8       | 10                 | 3.3       |
| Peripheral<br>Neuropathy | 40.4               | 6.7       | 14                | n/a       | 34.4               | 3.3       |
| Pyrexia                  | 18                 | 2.2       | 8.1               | 1.2       | 8.9                | 2.2       |

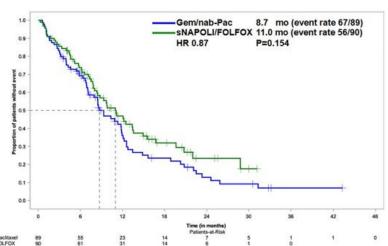
Westphalen B, et al, ASCO 2023 Abstract 4021

## A Different Sequencing Trial in Pancreatic Cancer: FOOTPATH





Sequential NAPOLI/FOLFOX led to (over GA):


An improved PFS


Numerically greater OS

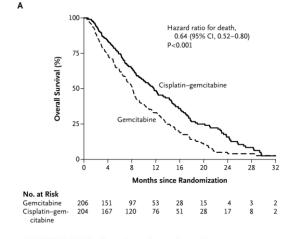
Greater tolerability





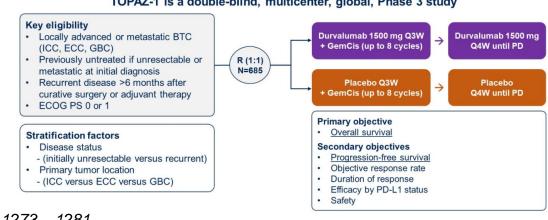







## **Updates in Biliary Tract Cancer**

# **TOPAZ-1: Gem-Cis +/- Durvalumab in Cholangiocarcinoma**

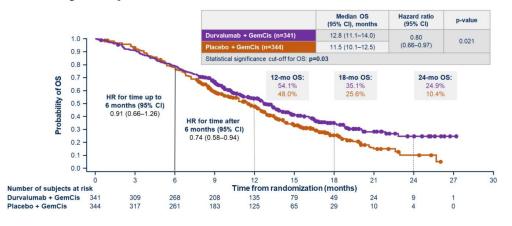



- For more than a decade, gemcitabine + cisplatin has been the standard of care in advanced biliary cancer
  - Gem-cis vs. gemcitabine alone
    - o mOS 11.7 vs. 8.1 months
    - o ORR 26.1 vs. 15.5%
- TOPAZ-1 was a Phase III randomized trial of gemonitability equals to gemonitability equals a period of trial of gemonitability equals a period of gemonitability equals a period of trial of trial of gemonitability equals a period of trial of trial
  - Note that gem-cis was stopped in both arms after 8 cycles
  - Patients with advanced, untreated biliary cancer
  - 685 patients were randomized
    - 1:1 randomization
    - Balanced arms

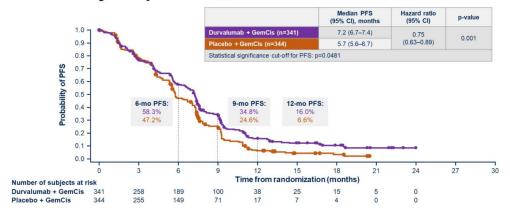


### **TOPAZ-1 study design**

TOPAZ-1 is a double-blind, multicenter, global, Phase 3 study



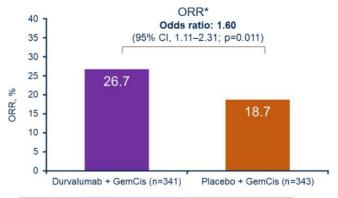

# **TOPAZ-1: Gem-Cis +/- Durvalumab in Cholangiocarcinoma**




- Overall survival was significantly greater for gem-cis-durva vs. gem-cis
  - mOS 12.8 vs. 11.5 months
  - HR = 0.80, p = 0.021
  - HR after 6 months was 0.74
- Progression-free survival was significantly gr eater for gem-cis-durva vs. gem-cis
  - mPFS 7.2 vs. 5.7 months
  - HR = 0.75, p = 0.001
- Overall survival benefit held true for virtually all subgroups analyzed including PD-L1 status

### **Primary endpoint: OS**




### **Secondary endpoint: PFS**



# TOPAZ-1: Gem-Cis +/- Durvalumab in Cholangiocarcinoma



- Objective response rate was greater for gem-cis-durva vs. gem-cis
  - ORR 26.7 vs. 18.7%

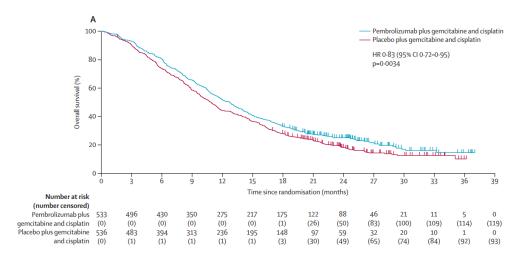


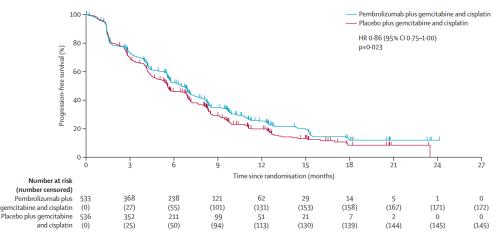
|             | Durvalumab<br>+ GemCis (n=341) | Placebo<br>+ GemCis (n=343) |
|-------------|--------------------------------|-----------------------------|
| ORR, n (%)  | 91 (26.7)                      | 64 (18.7)                   |
| CR, n (%)   | 7 (2.1)                        | 2 (0.6)                     |
| PR, n (%)   | 84 (24.6)                      | 62 (18.1)                   |
| DCR, n (%)† | 291 (85.3)                     | 284 (82.6)                  |

### Adverse events were very similar between the two arms

Any Grade 3/4 AEs 75.7 vs. 77.8%

### **Summary of AEs and treatment exposure**


|                                             | Durvalumab<br>+ GemCis (n=338) | Placebo<br>+ GemCis (n=342) |
|---------------------------------------------|--------------------------------|-----------------------------|
| Median duration of exposure (range), months |                                |                             |
| Durvalumab/placebo                          | 7.33 (0.1–24.5)                | 5.77 (0.2–21.5)             |
| Gemcitabine                                 | 5.19 (0.1-8.3)                 | 5.03 (0.2-8.6)              |
| Cisplatin                                   | 5.13 (0.1–8.3)                 | 4.88 (0.2–8.5)              |
| Adverse event, n (%)                        |                                |                             |
| Any AE                                      | 336 (99.4)                     | 338 (98.8)                  |
| Any TRAE                                    | 314 (92.9)                     | 308 (90.1)                  |
| Any grade 3/4 AE                            | 256 (75.7)                     | 266 (77.8)                  |
| Any grade 3/4 TRAE                          | 212 (62.7)                     | 222 (64.9)                  |
| Any serious AE                              | 160 (47.3)                     | 149 (43.6)                  |
| Any serious TRAE                            | 53 (15.7)                      | 59 (17.3)                   |
| Any AE leading to discontinuation           | 44 (13.0)                      | 52 (15.2)                   |
| Any TRAE leading to discontinuation         | 30 (8.9)                       | 39 (11.4)                   |
| Any AE leading to death                     | 12 (3.6)                       | 14 (4.1)                    |
| Any TRAE leading to death                   | 2 (0.6)                        | 1 (0.3)                     |
| Any immune-mediated AE                      | 43 (12.7)                      | 16 (4.7)                    |


# KEYNOTE-966: Gem-Cis +/- Pembro in Cholangiocarcinoma



- In April, 2023, Dr. Kelley presented a very similar trial
- KEYNOTE-966 was a Phase III randomized trial of gemcitabine + cisplatin +/pembrolizumab in advanced biliary cancer
  - Here ONLY cisplatin was stopped in both arms after 8 cycles (gem was continued)
  - Outcomes were very similar to TOPAZ-1

|            | TOPAZ-1 |               | KEYNOTE-966 |                |
|------------|---------|---------------|-------------|----------------|
|            | Gem-Cis | Gem-Cis-Durva | Gem-Cis     | Gem-Cis-Pembro |
| ORR (%)    | 19      | 27            | 29          | 29             |
| mPFS (mos) | 5.7     | 7.2           | 5.6         | 6.5            |
| mOS (mos)  | 11.5    | 12.8          | 10.9        | 12.7           |





# IMbrave151: Gem/Cis + Bev + Atezo in Advanced Biliary Tract Cancer



### IMbrave151 study design (NCT04677504)

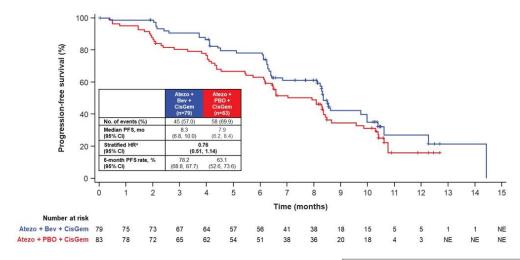
### Advanced biliary tract cancer (n=162)

- Histologically confirmed intrahepatic cholangiocarcinoma, extrahepatic cholangiocarcinoma or gallbladder cancer
- ECOG PS 0/1
- Measurable disease per RECIST 1.1
- No prior systemic treatment for advanced BTC
- Screening EGD required for patients at high risk of esophageal varices

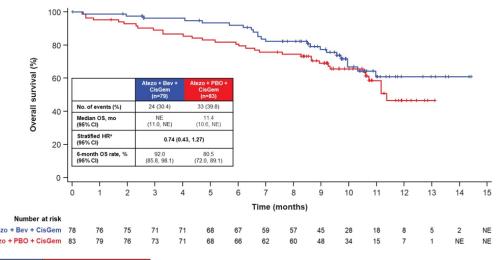
#### Cycle 9 and beyond Cycles 1-8 (21-day cycles) (21-day cycles) Gemcitabine (1000 mg/m<sup>2</sup> IV on Days 1 and 8) Cisplatin (25 mg/m<sup>2</sup> IV on Days 1 and 8) Bevacizumab (15 mg/kg IV g3w) Treat until disease progression. Atezolizumab (1200 mg IV q3w) unacceptable 1:1 toxicity or loss of clinical benefit Gemcitabine (1000 mg/m<sup>2</sup> IV on Days 1 and 8) Cisplatin (25 mg/m<sup>2</sup> IV on Days 1 and 8) No crossover Placebo (IV q3w) Atezolizumab (1200 mg IV q3w)

#### Stratification factors

- Anatomical location of primary tumor (iCCA, eCCA or GBC)
- Metastatic disease (yes or no)
- Geographic region (Asia vs rest of world)


### Key endpoints

- Primary endpoint: PFS<sup>a</sup>
- Key secondary endpoints: ORR, a duration of response, a DCR, a OS, safety, PRO/QOL
- Exploratory endpoints: 6-month PFS and OS rates, biomarkers, PRO-CTCAE


# IMbrave151: Gem/Cis + Atezo +/- Bev in Advanced Biliary Tract Cancer



### **Primary endpoint: PFS**



### Secondary endpoint: OS



| Confirmed response, n (%)        | Atezo + Bev +<br>CisGem<br>(n=79) | Atezo + PBO +<br>CisGem<br>(n=83) |
|----------------------------------|-----------------------------------|-----------------------------------|
| ORR <sup>a</sup><br>95% CI       | 19 (24.1)<br>15.1, 35.0           | 21 (25.3)<br>16.4, 36.0           |
| CR                               | 1 (1.3)                           | 1 (1.2)                           |
| PR                               | 18 (22.8)                         | 20 (24.1)                         |
| SD                               | 50 (63.3)                         | 45 (54.2)                         |
| PD                               | 5 (6.3)                           | 9 (10.8)                          |
| Missing/unevaluable <sup>b</sup> | 5 (6.3)                           | 8 (9.6)                           |
| DCR°                             | 62 (78.5)                         | 63 (75.9)                         |

# SWOG 1815: Gem, Cis, +/- Nab-pac in Advanced Biliary Tract Cancer



- In a Phase 2 single arm trial, Gem-Cis-Nab-pac resulted in a mOS of 19.2 months
  - Based on this, a randomized Phase 3 trial was designed

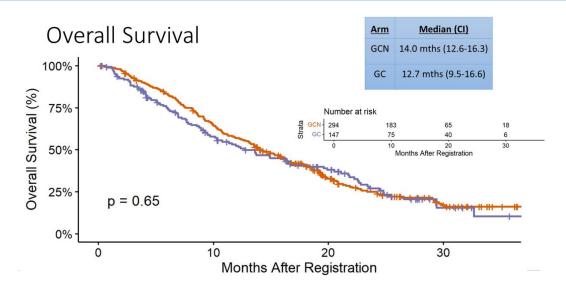
### Study Design

Prespecified stratifications factors: tumor type, PS, locally-advanced vs. metastatic

### Key Inclusion/Exclusion:

- Newly diagnosed, histologically proven untreated BTCs
- ECOG PS 0-1
- Adequate laboratories

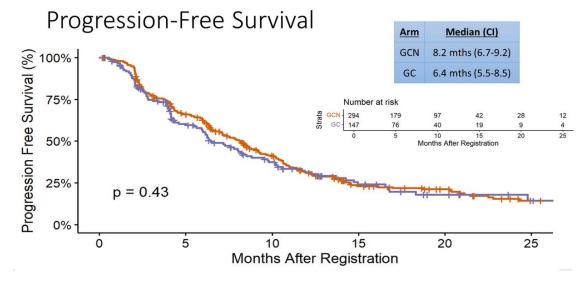
First line, advanced cholangiocarcinoma and gallbladder cancer Gemcitabine
800 mg/m2
+ Cisplatin 25
mg/m2 + NabPaclitaxel 100
mg/m2 IV
Days 1, 8 of a
21-day cycle


1000 mg/m2 + Cisplatin 25 mg/m2 IV Days 1, 8 of a 21-day cycle

Primary EP: OS; Target HR 0.7

Secondary: ORR, PFS, DCR, safety, CA 19-9 changes

# SWOG 1815: Gem, Cis, +/- Nab-pac in Advanced Biliary Tract Cancer






### Overall Response Rate

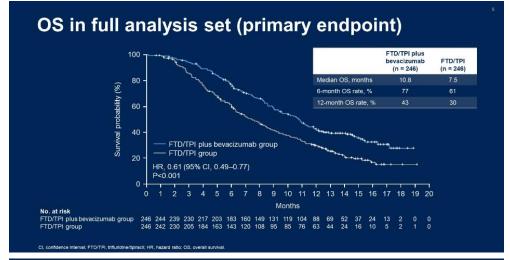
|                    | GC      | :N | GC      |    |
|--------------------|---------|----|---------|----|
|                    | N (289) | %  | N (143) | %  |
| Complete Response  | 6       | 2  | 1       | 1  |
| Partial Response   | 84      | 29 | 30      | 21 |
| Stable/No Response | 134     | 46 | 67      | 47 |

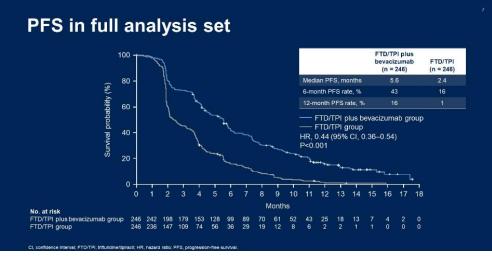
Overall Response Rate (ORR) = 31% versus 22% (ns) Disease Control Rate (DCR) = 77% versus 69% (ns)



Gr 3-4 Treatment-Related Adverse Events

| Treatment-Related Adverse Event       | GCN Grade 3-4 N (%) | GC Grade 3-4 N (%) |
|---------------------------------------|---------------------|--------------------|
| Anemia                                | 95 (33%)            | 30 (22%)           |
| Neutropenia                           | 105 (37%)           | 37 (28%)           |
| Thrombocytopenia                      | 56 (20%)            | 20 (15%)           |
| Leukopenia                            | 72 (25%)            | 14 (10%)           |
| Diarrhea                              | 13 (5%)             | 1 (0.7%)           |
| Fatigue                               | 26 (9%)             | 8 (6%)             |
| Sepsis                                | 12 (4%)             | 3 (2%)             |
| Peripheral Sensory Neuropathy         | 10 (4%)             | 1 (0.7%)           |
| *Included if incidence >5% of nations |                     |                    |

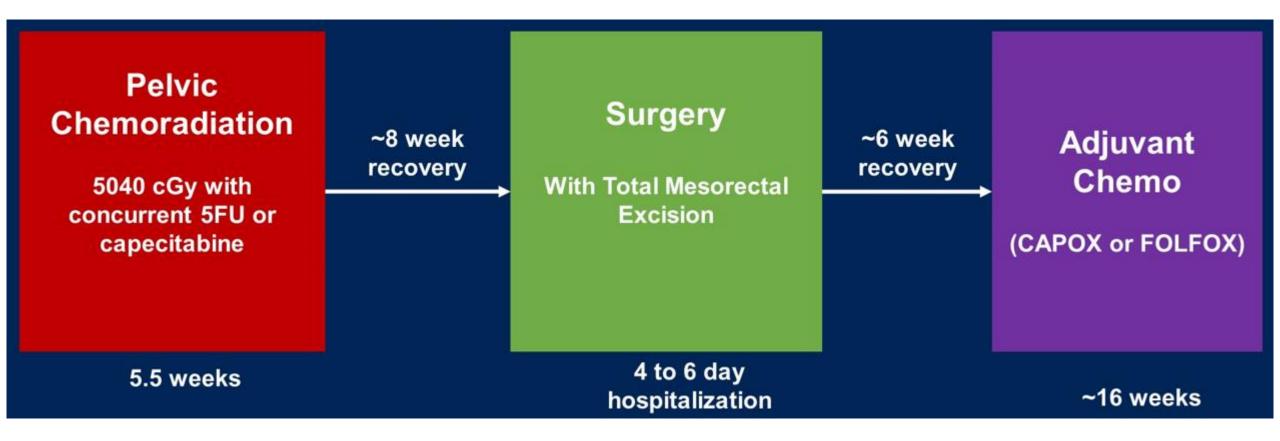




# Practice Changing Trials in Colorectal Cancer

## SUNLIGHT: TAS-102 +/- Bevacizumab as 3<sup>rd</sup> Line Tx for Metastatic Colorectal Cancer



- The Phase 3 SUNLIGHT study of TAS-102 +/- Bev as 3<sup>rd</sup> line therapy for mCRC
  - mOS 10.8 mos for the combo vs. 7.5 mos for TAS-102
  - This was a practice affirming study
  - But, pleasantly surprised by the magnitude of benefit



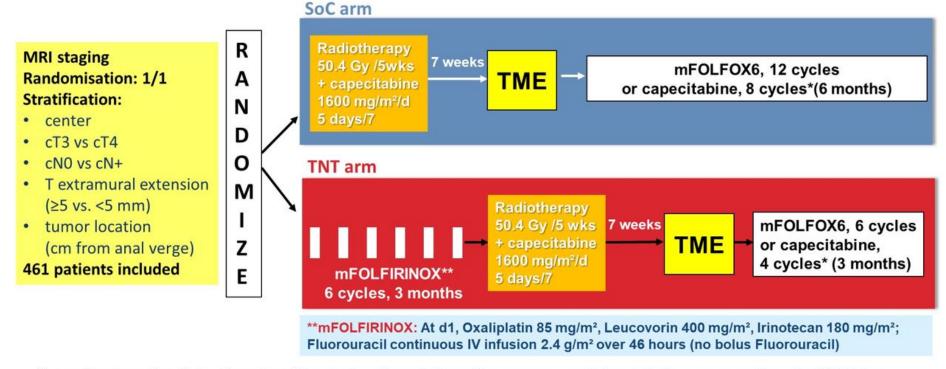



## Management of Locally Advanced Rectal Cancer



Since ~2005, this was the paradigm for the management of locally advanced rectal cancer



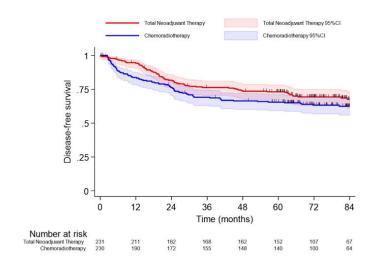

## Management of Locally Advanced Rectal Cancer



- But many new questions arose:
  - What kind of radiation is better short course or long course?
  - Could more or all of the chemotherapy be given preoperatively?
  - Could surgery be avoided altogether (watchful waiting, non-operative management)?
  - Could radiation be avoided?
- Unfortunately, there is no absolute best management of locally advanced rectal cancer
  - More than ever decisions need to be made on a case-by-case basis, taking into account in the particular wishes/priorities of the patient

## PRODIGE 23: Total Neoadjuvant mFOLFIRINOX vs. Preoperative ChemoRT in Locally Advanced Rectal Cancer

- Patients were randomized to SOC (at that time) vs. "TNT" with FOLFIRINOX
  - TNT is really a misnomer patients still received adjuvant chemotherapy for 3 months




<sup>\*</sup>according to center choice throughout the study; adjuvant chemotherapy was mandatory in both arms regardless of ypTNM stage.

## PRODIGE 23: Total Neoadjuvant mFOLFIRINOX vs. (a) JOHNS HOPKINS

## **Preoperative ChemoRT in Locally Advanced Rectal Cancer**

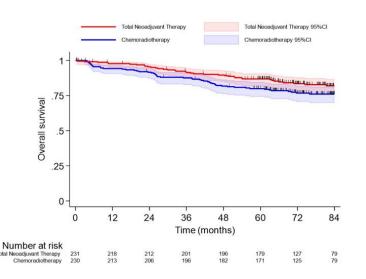
### **Disease-Free Survival**



#### 155 events

#### 7-vr DFS rate:

- 67.6% [95%CI: 60.7-73.6] TNT arm
- 62.5% [95%CI: 55.6-68.6] SoC arm


#### 5-yr DFS rate:

- 73.1% [95%CI: 66.8-78.4] TNT arm
- 65.5% [95%CI: 58.9-71.3] SoC arm

#### RMST (7-yr), months:

5.73 [0.05-11.41] DFS benefit for TNT arm

### **Overall Survival**



#### 98 events.

#### 7-vr OS:

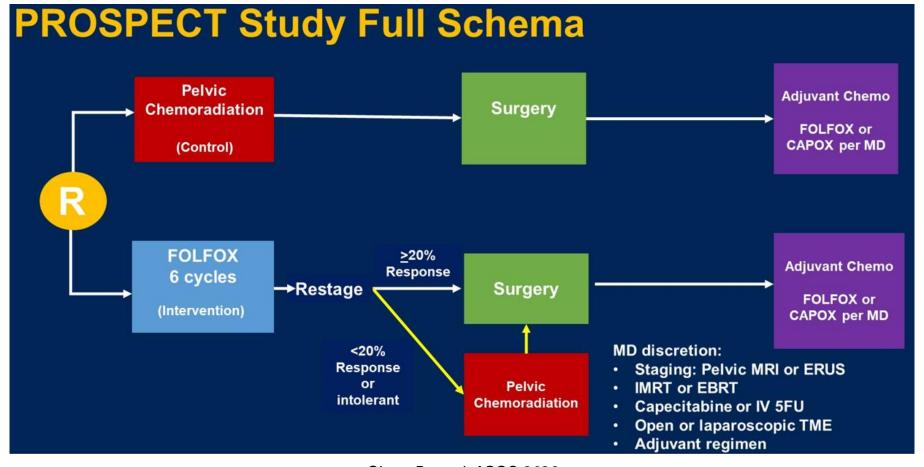
- 81.9% [95%CI: 75.8-86.7] TNT arm
- 76.1% [95%CI: 69.8-81.3] SoC arm

#### 5-vr OS:

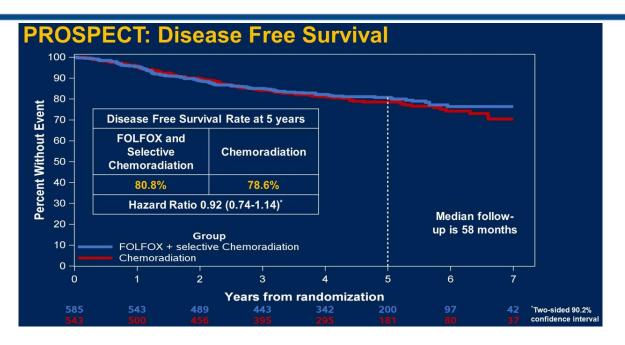
- 86.9% [95%CI: 81.6-90.7] TNT arm
- 80.0% [95%CI: 74.1-84.6] SoC arm

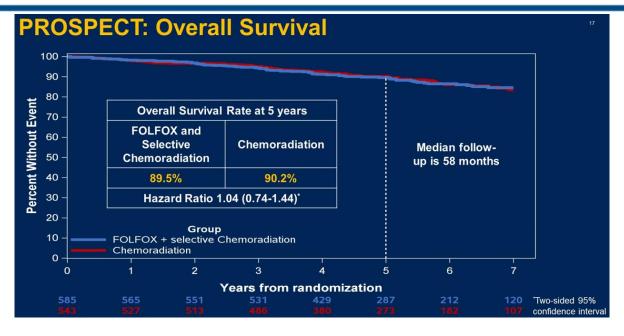
#### RMST (7-yr), months:

4.37 [0.35-8.38] benefit for TNT arm p = 0.033


### Cumulative incidence of rectal cancer recurrences

Disease free and overall survival were greater with TNT


| Results               | TNT                      | SoC                      |
|-----------------------|--------------------------|--------------------------|
| Local                 |                          |                          |
| At 5 years            | 4.7% [95%CI: 2.5-8.5]    | 6.4% [95%CI: 3.8-10.8]   |
| At 7 years            | 5.3% [95%CI: 2.9-9.3]    | 8.1% [95%CI: 4.9-13.3]   |
| Metastatic*           |                          |                          |
| At 5 years            | 18.4% [95%CI: 13.8-24.2] | 26.6% [95%CI: 21.2-33.0] |
| At 7 years            | 20.7% [95%CI: 15.6-27.0] | 27.7% [95%CI: 22.2-34.2] |
| Alive with metastases | 19/44 (43%)              | 21/60 (35%)              |


## PROSPECT: Preoperative Chemotherapy with Selective Chemoradiation in Locally Advanced Rectal Cancer

Hypothesis: Some rectal cancer patients can be cured WITHOUT pelvic radiation



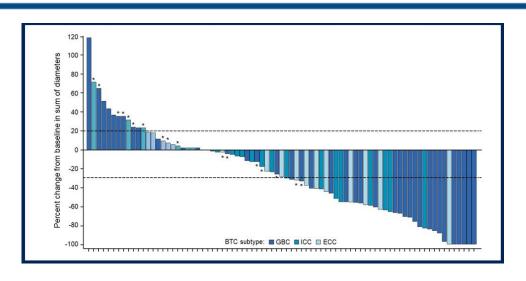
## PROSPECT: Preoperative Chemotherapy with Selective Chemoradiation in Locally Advanced Rectal Cancer

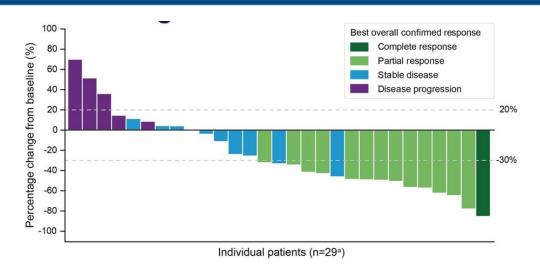




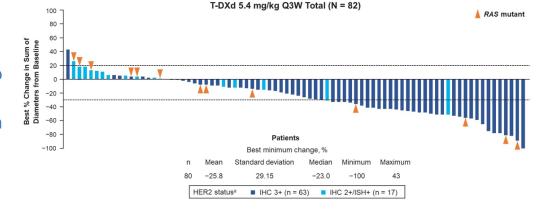
- The trial DID meet its primary endpoint
  - TNT with SELECTIVE radiation was NON-INFERIOR to chemo radiation for DFS and OS
  - Interestingly, the PathCR rate was similar with TNT with SELECTIVE radiation as it was with chemoradiation
  - But ONLY 9% of Pts in the TNT arm received radiation

| Secondary endpoints in participants who completed Surgery | FOLFOX and<br>Selective Pelvic<br>Chemoradiation | Pelvic<br>Chemoradiation |  |
|-----------------------------------------------------------|--------------------------------------------------|--------------------------|--|
|                                                           | N=535                                            | N=510                    |  |
| Complete (R0) Rectal Resection                            | 99%                                              | 97%                      |  |
| Low Anterior Resection Rate                               | 98%                                              | 98%                      |  |
| Pathologic Complete Response                              | 22%                                              | 24%                      |  |
| Positive Radial margin                                    | 1.2%                                             | 1.5%                     |  |


Shrag D, et al, ASCO 2023




### One More Slide...


## HER2 Targeted Therapy for GI Cancers







- Three important trials demonstrating significant activity of HER2-targeted therapy in GI cancers
  - Dr. Pant 41% ORR in 80 HER2+ BTC patients treated with zanidatamab (novel bivalent antiHER2 Ab)
  - Dr. Nakamura 47% ORR in 30 HER2+ BTC patients treated with tucatinib + trastuzumab
  - Dr. Raghav 38% ORR in 82 HER2+ CRC patients treated with T-DXd



Most important lesson – TEST YOUR PATIENTS



## Thank you and Questions?

# AmerisourceBergen