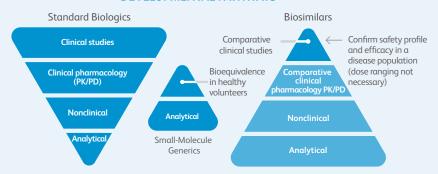


Biosimilars: Defining Characteristics

Biosimilars are highly similar versions of reference biologics, with no clinically meaningful differences in terms of safety, purity, and potency.¹

Biologics, including biosimilars, are more complex than small molecules.²⁻⁵

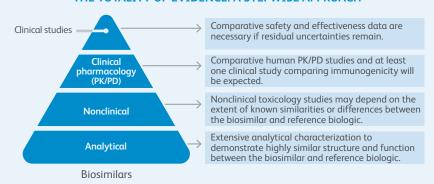

COMPLEXITY

While small-molecule generics are chemically synthesized, biosimilars (and reference biologics) are created in living cells and require significant expertise and state-of-the-art technology to manufacture and produce.^{3,6}

Development of Biosimilars

Providing a change in thinking from how reference biologics are evaluated, the FDA evaluates biosimilars based on a totality-of-evidence approach.^{1,7,8}

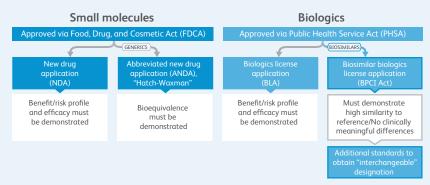
DEVELOPMENTAL PATHWAYS^{1,7-11}


PK, pharmacokinetic; PD, pharmacodynamic.

The goal of biosimilar development is to demonstrate that there are no clinically meaningful differences between the proposed biosimilar and the reference biologic—not to re-establish the clinical benefit of the reference biologic.¹

The Totality of Evidence

The FDA approval process evaluates the totality of evidence to ensure biosimilar quality, efficacy, and safety.¹


THE TOTALITY OF EVIDENCE: A STEPWISE APPROACH1

Approval Pathway for Biosimilars

Biosimilars may be approved through an abbreviated licensure pathway if high similarity with a reference product is established.¹

STANDARD AND ABBREVIATED PATHWAYS FOR DRUG APPROVAL IN THE UNITED STATES^{1,12-16}

Development of a biosimilar requires substantial time and financial investment.¹⁷

A biosimilar may involve a time investment of 5 to 9 years or more and cost more than \$100 million to develop (not including regulatory fees), 17,18 whereas development of a small-molecule generic may take up to 2 years and cost \$1 million to \$4 million. 19,20

Extrapolation: A Scientific and Regulatory Principle

After biosimilarity is determined, extrapolation enables potential licensure of a biosimilar across indications approved for the reference biologic.^{1,21-23}

SCIENTIFIC JUSTIFICATION IS REQUIRED IN EACH INDICATION NOT STUDIED CLINICALLY 1,24-26

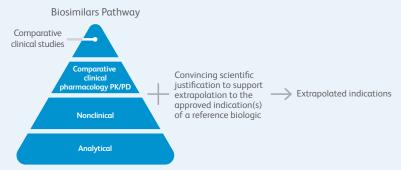


Image adapted from Sherman RE. Biosimilar biological products [biosimilar guidance webinar]. February 12, 2012.26

Biosimilar extrapolation occurs from the reference biologic to the biosimilar, when scientifically justified, based on all available data—not from the indication(s) studied with the biosimilar to other indications²⁵

Extrapolation is not automatic—scientific justification in each indication not clinically studied is organized around 4 key aspects that are considered by the FDA.¹

KEY FDA CONSIDERATIONS FOR EXTRAPOLATION¹

MECHANISM OF ACTION

 Experience with the reference biologic can help define the MOA and functional moieties in each indication

PK AND BIODISTRIBUTION

• PD measures may provide important MOA information

TIVIIVI

• Differences that may exist in each patient population

EXPECTED TOXICITIES

 Differences that may exist in each indication and patient population Scientific justification combines experience with the reference biologic and the totality of evidence.^{1,27-29}

SCIENTIFIC JUSTIFICATION FOR EXTRAPOLATION^{1,27-29}

EXPERIENCE WITH THE REFERENCE BIOLOGIC

Building on the high structural similarity between the 2 products, experience with the reference biologic helps provide an understanding of the 4 key FDA considerations

SUPPORT FROM THE TOTALITY OF EVIDENCE

- Structural studies and in vitro models demonstrating functional similarity across potential MOAs
- Clinical data that address differences between indications
- Clinical data that may be compared to existing evidence with the reference biologic

The rationale for extrapolation is $to^{21,24,30}$

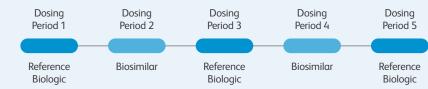
- Avoid unnecessary clinical studies
- Reduce development costs
- Allow for reallocation of resources

An Interchangeability Designation Is Not Required for a Physician to Switch a Patient to a Biosimilar^{28,29,31}

According to the FDA, products designated interchangeable may be substituted at the pharmacy level for the reference biologic without the intervention of the prescribing health care provider.^{15,31}

To be designated interchangeable, the biologic product 15,31

- Must be biosimilar to the reference biologic
- Must be expected to produce the same clinical result as the reference biologic in any given patient



For a biological product administered more than once, the risk in terms of safety or diminished efficacy of alternating or switching between use of the biological product and the reference biologic is not greater than the risk of using the reference biologic without such alternation or switch.

The interchangeability designation

An interchangeability designation considers the potential for alternation (multiple switches) between a biosimilar and reference biologic without physician intervention. 15,31

ALTERNATION

As of January 2018, no biosimilar has been designated interchangeable by the FDA.

Physician-directed switch

A physician-directed switch (eg, from a reference biologic to a biosimilar) is a prescribing decision made by a patient's physician.³²

Decisions to prescribe a biosimilar to patients currently stable on the reference biologic are not restricted by FDA guidance or the Biologics Price Competition and Innovations Act.^{14,31,32}

PHYSICIAN-DIRECTED SWITCH

Physicians may prescribe a biosimilar in the same manner that they would prescribe other medications—this physician-directed decision may include prescribing a biosimilar for patients currently stable on the reference biologic (eg, single transition or switch).³²

Substitution of Biosimilars

Many states have considered legislation establishing standards for substitution of a biosimilar product to replace the reference biologic. Such legislation may include the following features³³⁻³⁵:

- Any substituted biosimilar must first be designated as "interchangeable" by the FDA
- The prescriber would be able to prevent substitution by stating "dispense as written"
- The prescriber must be notified of any substitution made by the pharmacy
- Product-specific safety monitoring to ensure traceability

Potential of Biosimilars

Biologics have been used successfully to treat many life-threatening and chronic diseases.^{2,4,36} Between 2006 and 2016, biologics have grown from 18% to 41% as a percentage of new FDA approvals.³⁷

Biologics in the United States contribute significantly to prescription drug spending³⁸⁻⁴¹:

- In 2016, specialty medicines—including biologics—accounted for 43 % or \$384 of the \$895 per person per year spent on medicines⁴⁰
- By 2020, specialty drug sales will reach \$402 billion—47% or nearly half of prescription drug spending⁴¹

Biosimilars may offer a number of potential benefits to patients, payers, and providers in addition to cost savings to health care systems. 42-44

POTENTIAL OF BIOSIMILARS 42-44

Additional treatment choices at lower cost to the health care system	Increased access to biologics, which may lead to improved health outcomes overall
Possible savings and efficiencies to the health care system	Offer a variety of therapeutic options

1. US Food and Drug Administration (FDA), Guidance for Industry: Scientific Considerations Demonstrating Biosimilarity to a Reference Product. Silver Spring, MD: FDA; April 2015. 2. Ryan AM. Frontiers in nonclinical drug development. Biosimilars Vet Pathol. 2015;52(2):419-426. 3. Huml RA, Chance K, Baum AR, Provost E. Investment decisions based on biosimilar programs. http://www.raps.org/WorkArea/DownloadAsset.aspx?id=5228. Accessed July 20, 2016. 4. Kozlowski S, Woodcock J, Midthun K, Behrman Sherman R. Developing the nation's biosimilars program. New Engl J Med. 2011;365(5):385-388. 5. National Center for Biotechnology Information. Structure Summary MMDB. http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?uid=49463. Accessed July 15, 2016. 6. Mellstedt H, Niederwieser D, Ludwig H. The challenge of biosimilars. Ann Oncol. 2008;19(3):411-419. 7. McCamish M. EBG's perspective on the draft guidance on the non-clinical/dlinical issues. http://www.ema.europa.eu/docs/en_GB/ document_library/Presentation/2013/11/WC500154186.pdf. Accessed July 19, 2017. 8. Berghout A. Clinical programs in the development of similar biotherapeutic products: rationale and general principles. Biologicals. 2011;39(5):293-296. 9. Schneider CK, Vleminckx C, Gravanis I, et al. Setting the stage for biosimilar monoclonal antibodies. Nat Biotechnol. 2012;30(12):1179-1185. 10. Noaisieh G, Moreland L. Current and future biosimilars: potential practical applications in rheumatology. Biosimilars. 2013;3:27-33. 11. US Food and Drug Administration. Abbreviated New Drug Applications (ANDA): Generics. Updated July 1, 2015. https://www.fda.gov/drugs/developmentapprovalprocess/howdrugsgredevelopedandapproved/approvalapplications/ abbreviatednewdrugapplicationandagenerics/default.htm. Accessed June 21, 2016. 12. US Congress. Drug Price Competition and Patent Term Restoration Act of 1984. Title I, 98 Stat 1585, Public Law 98-417. 13. Patient Protection and Affordable Care Act, March 2010. 14. US Congress. United States Public Health Services Act. Sec 262 Regulation of Biological Products. 42USC262. https://www. gpo.gov/fdsys/pkg/USCODE-2010-title42/pdf/USCODE-2010-title42-chap6A-subchapII-partF-subpart1.pdf. Accessed July 19, 2017. 15. US Food and Drug Administration. Guidance for Industry: Questions and Answers regarding Implementation of the Biologics Price Competition and Innovation Act of 2009. Silver Spring, MD: FDA; 2015. 16. US Food and Drug Administration. New Drug Application (NDA). Last updated March 29, 2016. https://www.fda.gov/drugs/developmentapprovalprocess/howdrugsaredevelopedandapproved/ approvalapplications/newdrugapplicationnda/default.htm. Accessed July 17, 2017. 17. Blackstone EA, Fuhr JP. The economics of biosimilars. Am Health Drug Benefits. 2013;6(8):469-478. 18. Generics and Biosimilars Initiative. GaBI Online. Development of biosimilars. Posted July 1, 2011. http://www.gabionline.net/Biosimilars/Research/Development-of-biosimilars. Accessed June 23, 2017. 19. Grabowski H, Cockburn I, Long G. The market for follow-on biologics: how will it evolve? Health Aff (Milwood). 2006;25(1):1291-1301. 20. IMS Health. Shaping the biosimilars opportunity: a global perspective on the evolving biosimilars landscape. London, UK: IMS Health Inc; December 2011. 21. European Medicines Agency. Concept Paper on Extrapolation of Efficacy and Safety Profile in Medicine Development [final]. London, UK; March 19, 2013. 22. Windisch J. Biosimilars versus originators: similarities and differences from development to approval. Int J Clin Rheumatol. 2015;10(6):1-10. 23. US Food and Drug Administration. Overview of the Regulatory Pathway and FDA's Guidance for the Development and Approval of Biosimilar Products in the US. Arthritis Advisory Committee; February 9, 2016. 24. Weise M, Bielsky M-C, De Smet K, et al. Biosimilars: what clinicians should know. Blood. 2012;120(26):5111-5117. 25. Jenkins J. Biosimilars in the US: progress and promise. October 27, 2016. https://www.fda.gov/ downloads/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/UCM526935.pdf. Accessed August 14, 2017. 26. Sherman RE. Biosimilar biological products [biosimilar guidance webinar]. February 15, 2012. https://www.fda.gov/downloads/ AboutFDA/Transparency/Basics/UCM365448.pdf. Accessed June 9, 2017. 27. Weise M, Pekka K, Wolf-Holz E, Bielsky M-C, Schneider C. Biosimilars: the science of extrapolation. Blood. 2014;124(22):3191-3196. 28. US Food and Drug Administration. FDA Briefing Document. Arthritis Advisory Committee Meeting; BLA 125544. February 9, 2016. 29. US Food and Drug Administration. FDA Briefing Document. Arthritis Advisory Committee Meeting; BLA 761024. July 12, 2016. 30. European Medicines Agency. Gaucher Disease: Strategic Collaborative Approach From EMA and FDA. London, UK; May 12, 2014. 31. FDA Draft Guidance. Considerations in Demonstrating Interchangeability With a Reference Product. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm. Accessed July 19, 2017. 32. US Food and Drug Administration. Purple Book: Lists of Licensed Biological Products With Reference Product Exclusivity and Biosimilarity or Interchangeability Evaluations, https://www.fda.gov/drugs/developmentapprovalprocess/ how drugs are developed and approved / approval applications / the rapeut ic biologic applications / biosimilars / ucm 411418. htm. AccessedApril 19, 2017. 33. Benedict AL. State-level legislation on follow-on biologic substitution. J Law Biosci. 2014;1(2):190-201. 34. Li E, Ramanan S, Green L. Pharmacist substitution of biological products: issues and considerations. J Manag Care Spec Pharm. 2015;21(7):532-539. 35. National Conference of State Legislatures. State laws and legislation related to biologic medications and substitution of biosimilars. http://www.ncsl.org/research/health/state-laws-and-legislation-related-to-biologic-medications-andsubstitution-of-biosimilars.aspx. Published July 7, 2017. Accessed March 29, 2017. 36. Stockwin LH, Holmes S. Antibodies as therapeutic agents: vive la renaissance! Expert Opin Biol Ther. 2003;3(7):1133-1152. 37. Morrison C. Fresh from the pipeline—2016. Nat Biotech, 2017;35(2):108-112, 38, Schumock GT, Li EC, Suia KJ, et al. National trends in prescription drug expenditures and projections for 2016. Am J Health-Syst Pharm. 2016;73(14):1058-1075. 39. Mulcahy AW, Hlavka JP, Case SR. Biosimilar cost savings in the United States: initial experience and future potential. Santa Monica, CA: RAND Corporation; 2017. https://www.rand.org/pubs/ perspectives/PE264.html. Accessed December 5, 2017. 40. IQVIA Institute. Medicines Use and Spending in the U.S. A Review of 2016 and Outlook to 2021. May 4, 2017. https://structurecms-staging-psyclone.netdna-ssl.com/client_assets/dwonk/media/ attachments/590c/6aa0/6970/2d2d/4182/0000/590c6aa069702d2d41820000.pdf?1493985952. Accessed December 5, 2017. 41. Pennington R, Stubbings JA. Evaluation of specialty drug price trends using data from retrospective pharmacy sales transactions. J Manag Care Spec Pharm. 2016;22(9):1010-1017. 42. Strober BE, Armour K, Romiti R, et al. Biopharmaceuticals and biosimilars in psoriasis: what the dermatologist needs to know. J Am Acad Dermatol. 2012;66(2):317-322. 43. Scheinberg MA, Kay J. The advent of biosimilar therapies in rheumatology—"O brave new world." Nat Rev Rheumatol. 2012;8(7):430-436. 44. Henry D. Taylor C. Pharmacoeconomics of cancer therapies: considerations with the introduction of biosimilars. Semin Oncol. 2014;41(suppl 3):S13-S20.

Visit PfizerBiosimilars.com to learn more about biosimilars.

