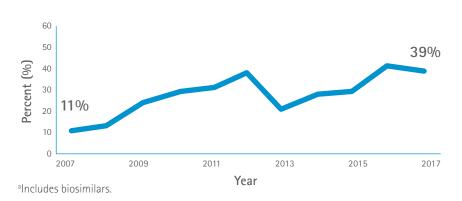


Strong demand for increased savings and efficiencies


"While only 2% of the US population uses biologics, they account for 40% of prescription drug spending in the United States."

- Biosimilars Council¹

GROWTH IN BIOLOGICS

More than 30 years since their initial approval*, biologic drugs have revolutionized the treatment of patients with some of the most difficult-to-treat diseases.^{2,3} They have had a meaningful impact on patient care in multiple disease states and have become an integral part of health care options in the United States and abroad.^{4,5} Between 2007 and 2017, biologics more than tripled as a proportion of the total US Food and Drug Administration (FDA) drug approvals (Figure 1).⁶ In 2018, the FDA acknowledged more than 125 therapeutic biologic products.⁷

Figure 1. Biologics Have More Than Tripled as a Percentage of New FDA Approvals Over 10 Years^{6,a}

The growing demand for biologics in the US health care system is demonstrated by their contribution to pharmaceutical sales.⁸ In 2017, half of the top 10 expenditure drugs in the United States were biologics.⁹ Between 2017 and 2026, health care and prescription drug spending are projected to increase annually at an average of 5.5% and 6.3%, respectively—this, by far, exceeds the average annual increase of 1.9% projected for the gross domestic product between 2021 and 2027.¹⁰⁻¹² Spending on biologics, by 2020, is expected to exceed \$250 billion, when nearly \$5 out of every \$10 the country spends on prescription drugs will be spent on biologics.¹³

^{*}Refers to approval of the first recombinant protein.

COST-SHARING BURDEN ON PATIENTS

Considering the growing costs of biologics, high-cost sharing may impact patients in multiple ways.

Commercially insured patients

Many commercially insured patients have high coinsurance requirements for specialty drugs. 14,15

>50%

of commercial payers **require coinsurance** for specialty drugs covered under the medical benefit¹⁴

Based on site of care, **coinsurance** rates may average between

21%-22%¹⁵

Medicare beneficiaries

For Medicare patients, annual out-of-pocket costs associated with biologic therapies may be substantial.

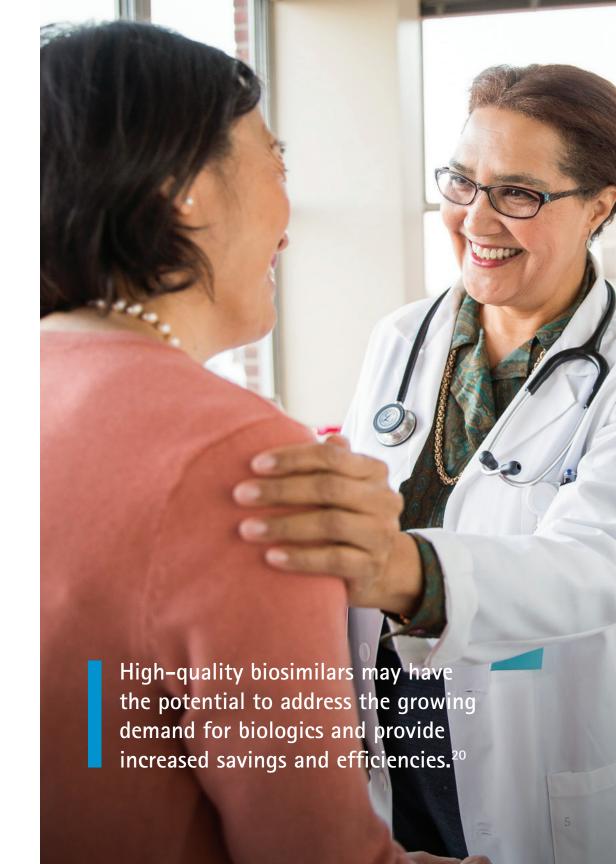
- After deductibles are met, Medicare patients typically pay **20**% **coinsurance** for most outpatient therapies¹⁶
- 14% of Medicare beneficiaries do not have supplemental insurance¹⁷

Depending on the therapy, the top 10 Medicare Part B-covered biologics^a with the highest out-of-pocket expenses may incur annual out-of-pocket costs of

~\$2,500-\$15,000^b

for the 14% of beneficiaries 17,18

Annual out-of-pocket costs may reach up to


~58%

of the median income of Medicare beneficiaries 18,19,c

BIOSIMILARS MAY HELP MEET THE GROWING DEMAND FOR BIOLOGICS

There is a strong demand for increased savings and efficiencies for the US health care system.^{8,20,21} With patents for a number of commonly used drugs either already expired or set to expire in the near future, biosimilars may potentially expand treatment options to meet the growing demand for biologic therapies and lower out-of-pocket costs for patients with cost-sharing requirements.^{4,20,21}

Percentage based on an annual out-of-pocket cost for a biologic costing \$15,119 and a median per capita income of \$26,200, reported for Medicare population in 2016.

^aExcludes small molecules, hormones, and human immunoglobulin G therapies.

^bRange covers multiple therapeutic areas and is based on average annual out-of-pocket costs per patient.

Biosimilars require substantial time and financial investment

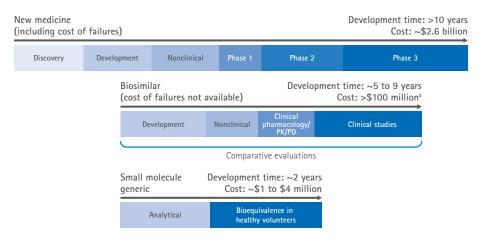
Bioequivalent versions of small molecule drugs are called generics. Highly similar versions of existing biologics are called biosimilars. 22,23

BIOSIMILARS ARE NOT GENERICS

Biologics, including biosimilars, are much more complex than small molecule drugs.⁴ Unlike small molecules, which are chemically synthesized, biologics are produced in living cells via a multistep process that requires significant expertise and state-of-the-art technology.⁴ **Table 1** shows the differences between small molecule drugs and biologics.

In contrast to a generic drug that is bioequivalent to its brand name small molecule, biosimilars are highly similar versions of reference biologics.⁴ A reference biologic is an FDA-approved biologic medicine with which a biosimilar is compared.²² A biosimilar is highly similar to the reference biologic with no clinically meaningful differences in terms of safety, purity, and potency.²² There are rigorous regulatory requirements in place to demonstrate biosimilarity.²²

Table 1. Differences Between Small Molecule Drugs and Biologics^{4,24,25}


	Small Molecule (Chemical)	Biologic (Protein)
Production	Chemical synthesis	Living systems (eg, cultured bacterial, yeast, animal, or plant cells)
Characterization	Can be characterized using limited physicochemical methods	Necessary to perform comprehensive structural and functional assessment
Administration	Mostly oral delivery	Parenteral (IM, IV, SC) delivery
Immunogenicity	Mostly nonimmunogenic	Potentially immunogenic

IM, intramuscular; IV, intravenous; SC, subcutaneous.

TIME AND FINANCIAL INVESTMENT

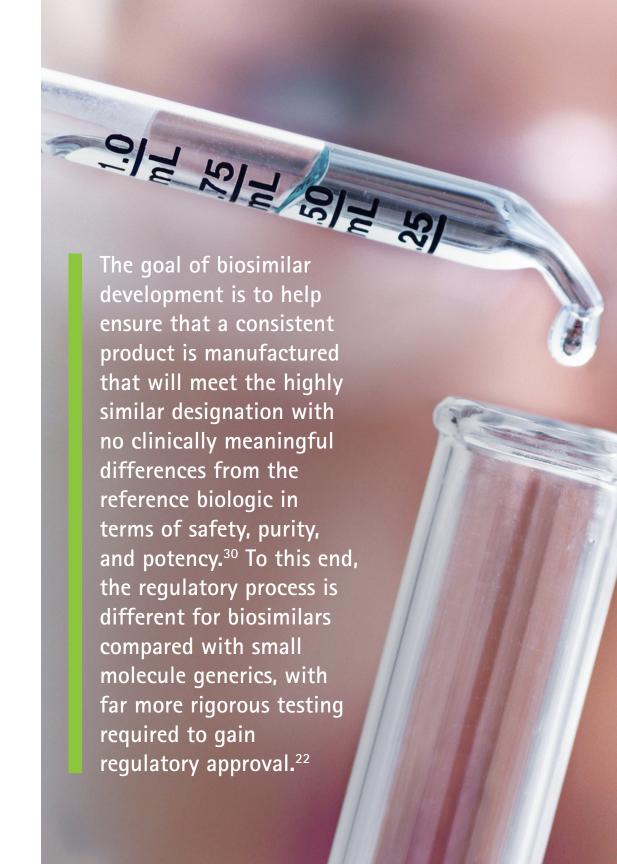

While biosimilars have the potential to provide additional treatment options at a lower cost, development of biosimilars requires substantial investment. Development of a biosimilar may take 5 to 9 years or more at a cost of over \$100 million, not including regulatory fees. A generic version of a small molecule drug, on the other hand, may cost \$1 million to \$4 million to develop (Figure 2). Below the potential to provide additional treatment options at a lower cost of the provide additional treatment options at a lower cost, development of biosimilars requires substantial investment.

Figure 2. Developing a Biosimilar Requires Substantial Time and Financial Investment Compared With a Small Molecule Generic²⁶⁻²⁹

PD, pharmacodynamic; PK, pharmacokinetic.

^aNot including regulatory fees.

Potential value of biosimilars

The successful adoption of biosimilars has the potential to provide additional treatment options at a lower cost.²⁰

POTENTIAL VALUE TO PATIENTS

Biosimilars may potentially improve access to biologics

Biosimilars have the potential of offering additional treatment choices to patients, physicians, and payers at potentially lower cost.^{20,31,32}

• These savings may enable more patients to have access to biologics, which could result in improved health outcomes for patients^{31,32}

Biosimilars may help reduce the out-of-pocket costs of biologic medicines

It is expected that health care providers, such as clinics or hospitals, will be able to acquire biosimilars at a lower wholesale cost than their reference products.^{31,32}

 Because of this, biosimilars may have the potential to lower out-of-pocket costs for patients with cost-sharing requirements, such as coinsurance and copayments^{31,32}

Patients who may pay less in the form of coinsurance

Patients with Medicare Part B without supplemental coverage^{16,17}

Patients with private insurance required to pay coinsurance for specialty drugs, including biologics^{14,17}

POTENTIAL BENEFITS TO THE HEALTH CARE SYSTEM

As the demand for biologics continues to grow, the introduction of biosimilars has the potential to provide multiple benefits to the US health care system (Figure 3).

Figure 3. Potential of Biosimilars for Patients, Payers, and Providers^{20,25,33}

The rules for development of biosimilars may also foster innovation.²⁶ The Biologics Price Competition and Innovation Act (BPCIA) includes provisions to ensure 12 years of marketing exclusivity for reference biologics, as well as mechanisms for patent resolutions to mitigate any potential violations.³⁴ These steps may help to encourage development of new biologics with unique or improved mechanisms of action.²⁶

Cost savings to health care systems due to biosimilars may be substantial. RAND corporation estimates that biosimilars may lead to savings of up to \$150 billion in direct spending on biologic drugs between 2017 and 2026.^{35,*} Savings realized by patients may depend on various factors, including changes in copays, coinsurance, etc, which may be more apparent in the future.³¹

^{*}Based on an assumption of a biosimilar market share of 50% and biosimilar prices that are 50% of the reference product.

Pfizer: Working to expand treatment options, potentially improving the lives of patients

PFIZER KEEPS PATIENTS AT THE CENTER OF WHAT WE DO

Biosimilars have the potential to broaden access and provide cost savings to the health care system, leading to better health outcomes overall.²⁰ Building on our technical development expertise and infrastructure in manufacturing biologics, Pfizer is at the forefront of delivering biosimilar medicines to patients and physicians around the world across multiple life-threatening and chronic diseases, including inflammation, immunology, and oncology.^{36,37}

Pfizer has the infrastructure and experience to make an impact with its biosimilar medicines^{9,36–38}

Pfizer Biosimilars is committed to working at every level to make the full potential of biosimilar medicines a reality, with

- Three biosimilars marketed outside the United States³⁸⁻⁴⁰
- First biosimilar monoclonal antibody (mAb) marketed in the United States⁴¹
- Three biosimilars approved in the United States⁴¹⁻⁴³

Leveraging over 10 years of experience with biosimilars outside the United States, Pfizer is invested in the future of biosimilars with 6 in various stages of clinical development. 36,38,44

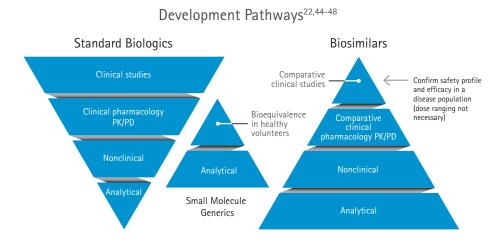
Pfizer: Investing in biosimilars with a focus on oncology, inflammation, and supportive care⁴⁴

15

A known product, a tailored process

Biosimilar development relies on, rather than recreates, the well-established clinical profile of the reference biologic.³¹

A UNIQUE APPROVAL PROCESS

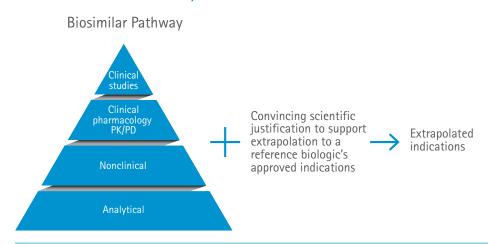

As part of the Affordable Care Act, the BPCIA created the regulatory framework for an abbreviated approval process for biosimilar products.³⁴ The act also provides for a 12-year exclusivity period from the date of licensing of the reference product before approval of any biosimilar may occur. Potential applications are not accepted or considered until 4 years after approval.³⁴ It is estimated that approximately 100 biologics will lose patent or other protections by 2021.²¹

PROVING BIOSIMILARITY

The approval process for biosimilars in the United States is outlined in **Figure 4**.²² The FDA has taken a "totality of evidence" approach to evaluating biosimilar agents.²² All of the data are generated via a stepwise approach.²² Each step of comparative investigation is used to establish that the potential biosimilar is "highly similar" to the reference product with no clinically meaningful differences in safety, efficacy, or potency. Demonstration of biosimilarity includes structural and functional characterization, nonclinical evaluation, comparative clinical pharmacology PK and PD data, clinical immunogenicity data, and may also typically include comparative clinical study data.²² Using multiple state-of-the-art methods, protein structures can be extensively characterized so that the reference product and biosimilar can be directly compared, helping to ensure comparability of both functional integrity and performance in vivo.³⁰

PROVING BIOSIMILARITY (cont)

Figure 4. The Goal of Biosimilar Development Is to Demonstrate That There Are No Clinically Meaningful Differences Based Upon the Totality of Evidence, Not to Reestablish Benefit²²



In the development of a reference biologic, the greatest contribution to clinical predictability resides at the top of the inverted pyramid (left; **Figure 4**), where the biologic drug is evaluated in a large number of patients with the aim of demonstrating superior efficacy versus placebo or comparator products and an acceptable tolerability profile.⁵⁰ In contrast to the inverted pyramid for the reference biologic, the biosimilar development pathway outlined by the FDA is focused at the bottom of the pyramid at right, where comprehensive comparisons are made to the reference biologic with respect to the structure and function of the molecule.^{22,47} For a biosimilar, this molecular characterization will provide the foundation for development, which builds on the clinical experience with the reference biologic.^{22,30} The aim of biosimilar drug development is to establish similarity to the reference product in terms of safety, purity, and potency, using a stepwise approach that includes analytical, nonclinical, and clinical comparability studies.²²

EXTRAPOLATION

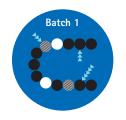
Once biosimilarity has been established in a specific indication, FDA guidance has indicated that a biosimilar may be licensed for additional indications of the reference biologic based on extrapolation (Figure 5).²² Extrapolation is a scientific and regulatory principle that enables licensure of a biosimilar across indications approved for the reference biologic that were not directly studied with the biosimilar.^{22,51} However, extrapolation is not automatic and requires scientific justification in each additional indication not clinically studied with a biosimilar.^{22,52}

Figure 5. Scientific Justification Is Required to Support Extrapolation to Indications Not Clinically Studied^{22,45,51}

Biosimilar extrapolation occurs from the reference biologic to the biosimilar, when scientifically justified based on all available data—not from the indication(s) studied with the biosimilar to other indications⁵³

Scientific justification is based on a combination of experience with the reference product and the totality of evidence from the biosimilar development.^{22,51} Building on high structural similarity, scientific justification in each indication not clinically studied is organized around 4 key aspects that are considered by the FDA: the mechanism of action (MOA), PK and biodistribution, immunogenicity, and expected toxicities.²²

By potentially avoiding unnecessary clinical studies that may be burdensome to patients, extrapolation may reduce development costs, thereby making effective medicines potentially more accessible to patients and enabling resource reallocation to other areas of medicine. 51,54,55


Common considerations with biosimilars

Manufacturing consistency enables the release of a biosimilar product into the marketplace and clinic with quality attributes highly similar to those of the original reference product.⁵¹

HETEROGENEITY OF BIOLOGICS

Biologics are not typically a single molecule entity, but rather a complex mix of the same protein molecule under various structurally close isoforms, which results in heterogeneity.⁵⁶ While there may be interbatch variability due to the intrinsic nature of the biologic manufacturing process, a product's quality attributes must remain within an acceptable range.⁵⁷ **Figure 6** depicts an example of variability between different batches of a biologic. Variability in the reference biologic's quality attributes measured over multiple lots can be used to evaluate the acceptability of the biosimilar.^{58,59}

Figure 6. Example of Variability Between Different Batches of a Biologic⁶⁰

Orange boxes highlight sites with minor differences in glycosylation

Adapted from the European Medical Agency (EMA) website

MANUFACTURING CONSISTENCY

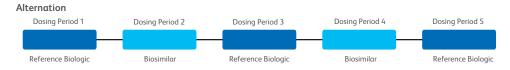
The manufacturing requirements for a biosimilar are equivalent to any new biologic entity, helping to ensure the production of a consistent, high-quality product.^{24,30} FDA guidance on product comparability evaluates the potential significance of changes to biologics, which has been available since 1996.³⁰ Demonstrating biosimilarity to a reference product requires more data and information than establishing comparability between a post- and premanufacturing change.³⁰ The similarity of the biological activity, safety, and efficacy of a biosimilar product to the reference product must be established based on the totality of evidence gathered in analytical, nonclinical, and clinical studies.²² Biosimilar developers establish independent manufacturing processes and target quality attributes of acceptable variability to establish biosimilarity based on a thorough comparison with the reference product.⁵¹ Manufacturing processes of biosimilars are designed, developed, and understood through the science- and risk-based approaches of quality by design. ⁶¹ Quality by design uses the full understanding of how product attributes and processes relate to performance. 61 As a result, manufacturing processes can be monitored and strategies can be implemented that help ensure a consistent product is made with overall quality and attributes maintained throughout its life cycle. 61

IMMUNOGENICITY

A common consideration for all biologics, including biosimilars, is immunogenicity. Immunogenicity is the ability of a molecule to elicit an immune response from the host. When a foreign entity enters the body, the immune system will trigger a response as a way of defending itself against bacteria, viruses, or other harmful substances. Being proteins, most biologics have the potential to induce antidrug antibodies (ADA), often resulting in no clinically relevant consequences.^{22,62} However, there is the potential for these antibodies to have clinical consequences.^{22,62} This reaction can result in the production of ADA, including neutralizing antibodies, which can lead to decreased efficacy^{22,62}; ADA may also result in general immune effects, including allergy, "serum sickness," or anaphylaxis.^{22,62} Importantly, there may be major clinical consequences if cross–neutralizing antibodies are generated that affect both the biologic product and an endogenous protein with essential activity.^{22,62}

The potential for immunogenicity is evaluated through the rigorous testing of the biosimilar during its development. Biosimilars need to demonstrate no clinically meaningful differences in immunogenicity compared with the reference product.²²

Introducing biosimilars into clinical practice


Physicians may prescribe a biosimilar in the same manner as they would prescribe other medications—this physician—directed decision may include prescribing a biosimilar for patients currently stable on the reference biologic (eg, single transition or switch).⁶³

Approved biosimilars should be a potential consideration for all patients who receive treatment with biologic medications for eligible indications.⁵¹ Acceptance by physicians that all qualifying patients can be treated with biosimilars may potentially facilitate increased access to biologic therapies for all patients.⁵²

THE US FDA DESIGNATION OF INTERCHANGEABILITY

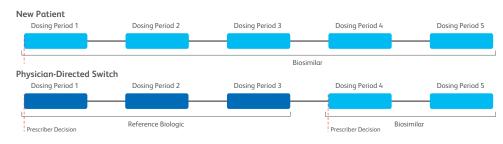

An interchangeability designation, by US law, is defined to mean a biosimilar may be substituted at the pharmacy level for the reference biologic without the intervention of the health care provider who prescribed the reference biologic. 64,65 For this reason, an interchangeability designation involves additional standards after biosimilarity is established. 65 In order to be designated interchangeable, it must be demonstrated that the biologic product is biosimilar to the reference biologic and can be expected to produce the same clinical result as the reference biologic in any given patient. 64,65 For a biologic product that is administered more than once to an individual, the risk in terms of safety or diminished efficacy of alternating or switching between the use of the biologic product and reference biologic is not greater than the risk of using the reference biologic without such alternation or switch (Figure 7). 64,65

Figure 7. An Interchangeability Designation Considers the Potential for Alternation (Multiple Switches) Between a Biosimilar and Reference Biologic Without Physician Intervention^{64,65}

An interchangeability designation is not required for a physician to switch a patient to a biosimilar. A physician-directed switch (eg, from a reference biologic to a biosimilar) is a prescribing decision made by a patient's physician (Figure 8). Decisions to prescribe a biosimilar to patients currently stable on the reference biologic are not restricted by FDA guidance or the BPCIA. A,63,65 Physicians may prescribe a biosimilar in the same manner as they would prescribe other medications—this physician-directed decision may include prescribing a biosimilar for patients currently stable on the reference biologic (eg, single transition or switch).

Figure 8. Physician-Directed Decisions to Start a New Therapy or Switch a Patient's Treatment (Single Transition)^{64,66,67}

An interchangeability designation is not required for a physician to switch a patient to a biosimilar^{64,66,67}

AT THE PHARMACY LEVEL

In January 2017, the FDA issued draft guidance describing the current thinking on expectations to meet the additional standard of the interchangeability designation.⁶⁴ When biosimilars are designated interchangeable, substitution at the pharmacy level will also be subject to state legislation.⁶⁸ Many states have considered legislation establishing standards for substitution of a biosimilar product to replace the reference biologic. Such legislation may include the following features⁶⁸⁻⁷⁰:

- Any substituted biosimilar must first be designated as "interchangeable" by the FDA
- The prescriber would be able to prevent substitution by stating "dispense as written"
- Prescriber must be notified of any substitution made by the pharmacy
- Product-specific safety monitoring to ensure traceability

Physicians may consult the FDA Purple Book for a complete list of biologic products licensed by the FDA, including biosimilars and biologic products with an interchangeability designation.⁶³

Glossary

Biologics: Biologics include a wide range of biological products such as vaccines, blood and blood components, allergenics, somatic cells, gene therapy, tissues, and genetically engineered therapeutic proteins. In this guide, "biologics" refers to genetically engineered proteins produced by living cells.²³

Biologics License Application (BLA): Biological products are approved for marketing under the provisions of the Public Health Service (PHS) Act. It requires a firm that manufactures a biologic for sale in interstate commerce to hold a license for the product. A BLA is a submission that contains specific information on the manufacturing processes, chemistry, pharmacology, clinical pharmacology, and the medical effects of the biologic product. If the information provided meets FDA requirements, the application is approved and a license is issued allowing the firm to market the product.²³

Biosimilar: Biologic that is highly similar to the reference product with no clinically meaningful differences in terms of safety, purity, and potency.²²

Biosimilar labeling: According to the FDA, biosimilar manufacturers should incorporate relevant data and information from the label of the reference product, with appropriate product-specific modifications.⁷¹ The use of a brand name in the label is recommended, where feasible and appropriate, in order to make distinctions between products as clear as possible.⁷¹

Biosimilar naming: Based on the final guidance by the FDA in January 2017, all biologics (including biosimilars) will be identified by a "nonproprietary" name consisting of a common "core" name plus a unique FDA-approved suffix composed of 4 letters (eg, replicamab-hjxf).⁷² A clearly distinguishable nonproprietary name with a unique suffix is necessary to track adverse events related to the specific biosimilar or reference product to help ensure appropriate prescribing and dispensing as well as prevent inadvertent substitution of biologic products.⁷²

Biosimilar reimbursement: As part of the final CY 2018 Medicare Physician Fee Schedule (PFS) policy, effective January 2018, an approved biosimilar will have a unique Healthcare Common Procedure Coding System (HCPCS) code and a payment limit determined by its own average sales price (ASP) calculation, allowing for greater competition within the category.^{73,74} Biosimilar reimbursement is calculated as its ASP plus 6% of the reference biologic's ASP.^{73,74}

Extrapolation: If a product meets FDA requirements for licensure as a biosimilar based on, among other things, data derived from a clinical study or studies that demonstrate safety, purity, and potency in one condition of use, additional conditions of use for which the reference product is licensed can be considered if the manufacturer provides sufficient scientific evidence for extrapolating clinical data to support the biosimilarity determination for each additional condition where licensure is sought.²²

Generic drug: A generic drug is the same as a brand-name drug in dosage, safety, strength, route of administration, quality, performance, and intended use. Before approving a generic drug product, the FDA requires many rigorous tests and procedures to ensure that the generic drug can be substituted for the brand-name drug. The FDA bases evaluations of substitutability, or "therapeutic equivalence," of generic drugs on scientific evaluations. By law, a generic drug product must contain the identical amounts of the same active ingredient(s) as the brand-name product. Drug products evaluated as "therapeutically equivalent" can be expected to have equal effect and no difference when substituted for the brand-name product.²³

Immunogenicity: The ability of a substance to trigger an immune response or reaction (eg, development of specific antibodies, T-cell response, or allergic or anaphylactic reaction).⁷⁵

Glossary (cont)

References

Interchangeability designation: To meet the additional standard of interchangeability, biosimilarity needs to be established first. An "interchangeable" biologic product must demonstrate that it can be expected to produce the same clinical result as the reference product in any given patient. In addition, if the biologic product is administered more than once to an individual, the risk in terms of safety profile or diminished efficacy of alternating or switching between the use of the biologic product and the reference product is not greater than the risk of using the reference product without such alternation or switch.⁶⁵

Pharmacovigilance: The science and activities relating to the detection, assessment, understanding, and prevention of adverse effects or any other drug-related problems.⁷⁵

Reference product: Reference product means the single biological product licensed under section 351(a) of the PHS Act against which a biological product is evaluated in a 351(k) application.²²

Small molecule drugs: Small molecule drugs are usually chemically synthesized with a fixed, known structure having a molecular weight of less than 1000 daltons, and typically between 300 and 700 daltons. For reference, aspirin is 180 daltons and paclitaxel is 854 daltons.⁷⁶

- The Biosimilars Council. Biosimilars: A Safe & Effective Option for Patients. http:// biosimilarscouncil.org/wp-content/uploads/2017/06/Biosimilars-Fact-Sheet_FINAL_5-31-17.pdf. Updated May 2017. Accessed January 22, 2018.
- Junod SW. Celebrating a milestone: FDA's approval of first genetically-engineered product. http://www.fda.gov/AboutFDA/WhatWeDo/History/ProductRegulation/ SelectionsFromFDLIUpdateSeriesonFDAHistory/ucm081964.htm. Accessed May 18, 2018.
- Kinch MS. An overview of FDA-approved biologics medicines. Drug Discov Today. 2015;20(4): 393-398.
- 4. Ryan AM. Frontiers in nonclinical drug development: biosimilars. Vet Pathol. 2015;52(2):419-426.
- Kozlowski S, Woodcock J, Midthun K, Sherman RB. Developing the nation's biosimilar program. N Engl J Med. 2011;365(5):385–388.
- Morrison C. Fresh from the biotech pipeline—2017. Nat Biotechnol. 2018 Jan 22. doi: 10.1038/ nbt.4068. [Epub ahead of print]
- US Food and Drug Administration. CDER Therapeutic Biologic Products: CDER Billable Biologic Product List. Updated March 2018. https://www.fda.gov/downloads/ForIndustry/UserFees/ PrescriptionDrugUserFee/UCM164641.pdf. Accessed May 9, 2018.
- 8. Delivering on the Potential of Biosimilar Medicines: The Role of Functioning Competitive Markets. Parsippany, NJ: IMS Institute for Healthcare Informatics; March 2016. https://www.iqvia.com/-/media/iqvia/pdfs/institute-reports/delivering-on-the-potential-of-biosimilar-medicines. pdf?la=enEthash=7705453CF0E82EF41402A87A44744FBF8D84327CEt_=1526670045127. Accessed May 18, 2018.
- 9. Data on file. Pfizer Inc, New York, NY.
- United States Congress Congressional Budget Office. The Budget and Economic Outlook: 2017 to 2027. January 2017. https://www.cbo.gov/sites/default/files/115th-congress-2017-2018/ reports/52370-outlookonecolumn.pdf. Accessed May 18, 2018.
- Centers for Medicare & Medicaid Services. National Health Expenditure Projections 2017-2026

 Forecast Summary. https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/Downloads/ForecastSummary.pdf. Accessed May 18, 2018.
- 12. Centers for Medicare & Medicaid Services. National Health Expenditure Projections 2017-2026 Tables. https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/Downloads/Proj2017Tables.zip. Accessed May 18, 2018.
- 13. The Biosimilars Council. The next frontier for improved access to medicines: biosimilars and interchangeable biologic products. https://biosimilarscouncil.org/wp-content/uploads/2017/03/Biosimilars-Handbook.pdf. Accessed September 8, 2017.
- 14. Magellan RX Management. Medical Pharmacy Trend Report. 2016. 7th ed. https://www1.magellanrx.com/media/604882/2016mrxtrendreport_final.pdf. Accessed May 10, 2018.
- EMD Serono, Inc. EMD Serono Specialty Digest. Managed Care Strategies for Specialty Pharmaceuticals. 2017. 13th ed. https://specialtydigestemdserono.com. Accessed May 10, 2018.
- 16. Medicare.gov. Medicare 2018 costs at a glance. https://www.medicare.gov/your-medicare-costs/costs-at-a-glance/costs-at-glance.html. Accessed May 10, 2018.

References (cont)

- 17. The Henry J. Kaiser Family Foundation. A primer on Medicare: key facts about the Medicare program and the people it covers. http://files.kff.org/attachment/report-a-primer-on-medicare-key-facts-about-the-medicare-program-and-the-people-it-covers. March 2015. Accessed May 10, 2018.
- Centers for Medicare & Medicaid Services. Medicare Drug Spending Dashboard. https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Dashboard/2015-Medicare-Drug-Spending/medicare-drug-spending-dashboard-2015-data.html. Accessed May 10, 2018.
- The Henry J. Kaiser Family Foundation. Issue Brief. Income and assets of Medicare beneficiaries, 2016–2035. http://files.kff.org/attachment/Issue-Brief-Income-and-Assets-of-Medicare-Beneficiaries, 2016–2035. April 2017. Accessed May 10, 2018.
- 20. Henry D, Taylor C. Pharmacoeconomics of cancer therapies: considerations with the introduction of biosimilars. *Semin Oncol.* 2014;41(suppl 3):S13–S20.
- 21. Thayer AM. The new copycats. *Chem Eng News*. 2013;91(40):15-23.
- 22. US Food and Drug Administration. *Guidance for Industry: Scientific Considerations in Demonstrating Biosimilarity to a Reference Product.* Silver Spring, MD: FDA; 2015.
- 23. US Food and Drug Administration. Drugs@FDA glossary of terms. https://www.fda.gov/drugs/informationondrugs/ucm079436.htm. Accessed May 19, 2018.
- 24. Mellstedt H, Niederwieser D, Ludwig H. The challenge of biosimilars. Ann Oncol. 2008;19(3):411-419.
- 25. Strober BE, Armour K, Romiti R, et al. Biopharmaceuticals and biosimilars in psoriasis: what the dermatologist needs to know. *J Am Acad Dermatol*. 2012;66(2):317–322.
- 26. Blackstone EA, Fuhr JP. The economics of biosimilars. Am Health Drug Benefits. 2013;6(8):469-478.
- 27. Generics and Biosimilars Initiative. Development of biosimilars. July 1, 2011. http://www.gabionline.net/Biosimilars/Research/Development-of-biosimilars. Accessed August 2, 2017.
- 28. Grabowski H, Cockburn I, Long G. The market for follow-on biologics: how will it evolve? *Health Aff (Millwood)*. 2006;25(5):1291-1301.
- 29. IMS Health. Shaping the biosimilars opportunity: a global perspective on the evolving biosimilars landscape. http://weinberggroup.com/pdfs/Shaping_the_biosimiliars_opportunity_A_global_perspective_on_the_evolving_biosimiliars_landscape.pdf. Accessed July 27, 2017.
- 30. US Food and Drug Administration. *Guidance for Industry: Quality Considerations in Demonstrating Biosimilarity of a Therapeutic Protein Product to a Reference Product.* Silver Spring, MD: FDA; 2015.
- 31. Mulcahy AW, Predmore Z, Mattke S. The cost savings potential of biosimilar drugs in the United States. Santa Monica, CA: RAND Corporation; 2014.
- 32. US Food and Drug Administration. Biosimilar development, review, and approval. https://www.fda.gov/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/Biosimilars/ucm580429.htm. Accessed May 10, 2018.
- 33. Scheinberg MA, Kay J. The advent of biosimilar therapies in rheumatology—"0 brave new world." *Nat Rev Rheumatol.* 2012;8(7):430–436.

- 34. United States Congress. Biologics Price Competition and Innovation Act of 2009, Title VII, Subtitle A, § 7001–7003 of the Patient Protection and Affordable Care Act, Public Law 111–148, 124 Stat. 119, 804–21 (2010).
- 35. Mulcahy AW, Hlávka JP, Case SR. Biosimilar cost savings in the United States. Santa Monica, CA: RAND Corporation; 2017.
- 36. Pfizer, Inc. Pfizer 2017 Annual Review. https://www.pfizer.com/files/investors/financial_reports/annual_reports/2017/assets/pdf/pfizer-2017-annual-review.pdf. Accessed May 21, 2018.
- 37. Pfizer Inc. Pfizer 2015 Annual Review. https://www.pfizer.com/files/investors/financial_reports/annual_reports/2015/assets/pdfs/pfi2015ar-manufacturing-and-supply-chain.pdf. Accessed May 24, 2018.
- 38. European Medicines Agency. European public assessment report summary. London: © European Medicines Agency. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000872/human_med_001031.jsp&mid=WC0b01ac058001d124. Accessed May 18, 2018.
- 39. European Medicines Agency. European public assessment report summary. London: © European Medicines Agency. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002778/human_med_001677.jsp€tmid=WC0b01ac058001d124. Accessed May 18, 2018.
- 40. European Medicines Agency. European public assessment report summary. London: © European Medicines Agency. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/001142/human_med_001344.jsp&tmid=WC0b01ac058001d124. Accessed May 18, 2018.
- 41. Hernandez R. FDA approves first mAb biosimilar. BioPharm International. April 6, 2016. http://www.biopharminternational.com/fda-approves-first-mab-biosimilar. Accessed May 18, 2018.
- 42. US Food and Drug Administration. https://www.fda.gov/Drugs/InformationOnDrugs/ ApprovedDrugs/ucm607723.htm. Accessed May 23, 2018.
- 43. Generics and Biosimilars Initiative. https://bit.ly/2I7n3tP. Accessed May 23, 2018.
- 44. Pfizer, Inc. Pfizer pipeline. May 1, 2018. https://www.pfizer.com/sites/default/files/product-pipeline_Update_01MAY2018.pdf. Accessed May 23, 2018.
- 45. McCamish M. EBG's perspective on the draft guideline on the non-clinical/clinical issues. Presented at: European Medicines Agency Workshop on Biosimilars; October 2013; London, UK.
- 46. Berghout A. Clinical programs in the development of similar biotherapeutic products: rationale and general principles. *Biologicals*. 2011;39(5):293–296.
- 47. Schneider CK, Vleminckx C, Gravanis I, et al. Setting the stage for biosimilar monoclonal antibodies. *Nat Biotechnol.* 2012;30(12):1179–1185.
- 48. Noaiseh G, Moreland L. Current and future biosimilars: potential practical applications in rheumatology. *Biosimilars*. 2013;3:27–33.

References (cont)

- 49. US Food and Drug Administration. Abbreviated New Drug Application (ANDA): Generics. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/AbbreviatedNewDrugApplicationANDAGenerics/. Accessed July 31, 2017.
- 50. Kingham R, Klasa G, Carver KH. Key regulatory guidelines for the development of biologics in the United States and Europe. In: Wang W, Singh M, eds. *Biological Drug Products: Development and Strategies.* 1st ed. Hoboken, NJ: John Wiley & Sons, Inc.; 2013:75–109.
- 51. Weise M, Kurki P, Wolff-Holz E, Bielsky MC, Schneider CK. Biosimilars: the science of extrapolation. *Blood*. 2014;124(22):3191–3196.
- 52. Weise M, Bielsky MC, De Smet K, et al. Biosimilars: what clinicians should know. *Blood*. 2012;120(26):5111-5117.
- Jenkins J. Biosimilars in the US: progress and promise. October 27, 2016. https://www.fda.gov/downloads/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/UCM526935.pdf. Accessed August 14, 2017.
- 54. European Medicines Agency. Concept paper on extrapolation of efficacy and safety profile in medicine development. March 19, 2013. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_quideline/2013/04/WC500142358.pdf. Accessed May 18, 2018.
- 55. European Medicines Agency. Paediatric Gaucher disease: a strategic collaborative approach from EMA and FDA. July 6, 2017. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_quideline/2017/06/WC500230342.pdf. Accessed May 18, 2018.
- 56. Ho K, Trouvin JH. Biologicals' characteristics. In: Prugnaud JL, Trouvin JH, eds. *Biosimilars: A New Generation of Biologics*. Paris, France: Springer-Verlag Paris; 2013:1–22.
- 57. Schiestl M, Stangler T, Torella CM, et al. Acceptable changes in quality attributes of glycosylated biopharmaceuticals. *Nat Biotechnol*. 2011;29(4):310–312.
- 58. McCamish M, Woollett G. Worldwide experience with biosimilar development. *MAbs.* 2011;3(2):209–217.
- 59. Kirchhoff CF, Wang XM, Conlon HD, et al. Biosimilars: key regulatory considerations and similarity assessment tools. *Biotechnol Bioeng*. 2017;114(12):2696-2705.
- 60. European Medicines Agency. Biosimilars in the EU. Information guide for healthcare professionals. 2017. http://www.ema.europa.eu/docs/en_GB/document_library/Leaflet/2017/05/WC500226648. pdf. Accessed March 20, 2018.
- 61. Winkle HN. Implementing quality by design. https://pdfs.semanticscholar.org/presentation/45cc/be8e1407cf18245299106c1cd7c8cc31c640.pdf. Accessed May 18, 2018.
- 62. Kessler M, Goldsmith D, Schellekens H. Immunogenicity of biopharmaceuticals. *Nephrol Dial Transplant*. 2006;21(suppl 5):v9-v12.
- 63. US Food and Drug Administration. Purple Book: Lists of Licensed Biological Products With Reference Product Exclusivity and Biosimilarity or Interchangeability Evaluations. https://www.fda.gov/drugs/developmentapprovalprocess/howdrugsaredevelopedandapproved/approvalapplications/therapeuticbiologicapplications/biosimilars/ucm411418.htm. Accessed May 18, 2018.

- 64. US Food and Drug Administration. *Guidance for Industry: Considerations in Demonstrating Interchangeability With a Reference Product.* Silver Spring, MD: FDA; 2017.
- 65. US Food and Drug Administration. *Guidance for Industry: Biosimilars: Questions and Answers Regarding Implementation of the Biologics Price Competition and Innovation Act of 2009.* Silver Spring, MD: FDA; 2015.
- 66. US Food and Drug Administration. FDA Briefing Document. Arthritis Advisory Committee Meeting; February 09, 2016: BLA 125544. https://www.fda.gov/downloads/%E2%80%A6/UCM484859.pdf. Accessed May 18, 2018.
- 67. US Food and Drug Administration. FDA Briefing Document. Arthritis Advisory Committee Meeting; July 12, 2016. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/ArthritisAdvisoryCommittee/UCM510293.pdf. Accessed August 2, 2017.
- 68. National Conference of State Legislatures. State laws and legislation related to biologic medications and substitution of biosimilars. http://www.ncsl.org/research/health/state-laws-and-legislation-related-to-biologic-medications-and-substitution-of-biosimilars.aspx. Accessed May 19, 2018.
- 69. Benedict AL. State-level legislation on follow-on biologic substitution. *J Law Biosci.* 2014;1(2): 190–201.
- 70. Li E, Ramanan S, Green L. Pharmacist substitution of biological products: issues and considerations. *J Manag Care Spec Pharm.* 2015;21(7):532–539.
- 71. US Food and Drug Administration. *Guidance for Industry: Labeling for Biosimilar Products.* Silver Spring, MD: FDA; 2016.
- 72. US Food and Drug Administration. *Guidance for Industry: Nonproprietary Naming of Biological Products.* Silver Spring, MD: FDA; 2017.
- 73. Department of Health and Human Services. Centers for Medicare and Medicaid Services. https://s3.amazonaws.com/public-inspection.federalregister.gov/2017-14639.pdf. Accessed May 19, 2018.
- 74. Center for Biosimilars. CMS biosimilar reimbursement shift: what you need to know. http://www.centerforbiosimilars.com/contributor/sonia-oskouei/2017/10/cms-biosimilar-reimbursement-shift-what-you-need-to-know. November 16, 2017. Accessed May 24, 2018.
- 75. World Health Organization. Guidelines on Evaluation of Similar Biotherapeutic Products (SBPs). Geneva, Switzerland: WHO; October 2009. http://www.who.int/biologicals/areas/biological_therapeutics/BIOTHERAPEUTICS_FOR_WEB_22APRIL2010.pdf?ua=1. Accessed April 14, 2016.
- 76. Dranitsaris G, Dorward K, Hatzimichael E, Amir E. Clinical trial design in biosimilar drug development. *Invest New Drugs*. 2013;31(2):479–487.

Notes

